195 research outputs found

    Supplemental Ascorbate Diminishes DNA Damage Yet Depletes Glutathione and Increases Acute Liver Failure in a Mouse Model of Hepatic Antioxidant System Disruption

    Get PDF
    Cellular oxidants are primarily managed by the thioredoxin reductase-1 (TrxR1)- and glutathione reductase (Gsr)-driven antioxidant systems. In mice having hepatocyte-specific codisruption of TrxR1 and Gsr (TrxR1/Gsr-null livers), methionine catabolism sustains hepatic levels of reduced glutathione (GSH). Although most mice with TrxR1/Gsr-null livers exhibit long-term survival, ~25% die from spontaneous liver failure between 4- and 7-weeks of age. Here we tested whether liver failure was ameliorated by ascorbate supplementation. Following ascorbate, dehydroascorbate, or mock treatment, we assessed survival, liver histology, or hepatic redox markers including GSH and GSSG, redox enzyme activities, and oxidative damage markers. Unexpectedly, rather than providing protection, ascorbate (5 mg/mL, drinking water) increased the death-rate to 43%. In adults, ascorbate (4 mg/g × 3 days i.p.) caused hepatocyte necrosis and loss of hepatic GSH in TrxR1/Gsr-null livers but not in wildtype controls. Dehydroascorbate (0.3 mg/g i.p.) also depleted hepatic GSH in TrxR1/Gsr-null livers, whereas GSH levels were not significantly affected by either treatment in wildtype livers. Curiously, however, despite depleting GSH, ascorbate treatment diminished basal DNA damage and oxidative stress markers in TrxR1/Gsr-null livers. This suggests that, although ascorbate supplementation can prevent oxidative damage, it also can deplete GSH and compromise already stressed livers

    High Efficiency Lipid-Based siRNA Transfection of Adipocytes in Suspension

    Get PDF
    BACKGROUND:Fully differentiated adipocytes are considered to be refractory to introduction of siRNA via lipid-based transfection. However, large scale siRNA-based loss-of-function screening of adipocytes using either electroporation or virally-mediated transfection approaches can be prohibitively complex and expensive. METHODOLOGY/PRINCIPAL FINDINGS:We present a method for introducing small interfering RNA (siRNA) into differentiated 3T3-L1 adipocytes and primary human adipocytes using an approach based on forming the siRNA/cell complex with the adipocytes in suspension rather than as an adherent monolayer, a variation of "reverse transfection". CONCLUSIONS/SIGNIFICANCE:Transfection of adipocytes with siRNA by this method is economical, highly efficient, has a simple workflow, and allows standardization of the ratio of siRNA/cell number, making this approach well-suited for high-throughput screening of fully differentiated adipocytes

    Lipidomics and Redox Lipidomics Indicate Early Stage Alcohol-Induced Liver Damage.

    Get PDF
    Alcoholic fatty liver disease (AFLD) is characterized by lipid accumulation and inflammation and can progress to cirrhosis and cancer in the liver. AFLD diagnosis currently relies on histological analysis of liver biopsies. Early detection permits interventions that would prevent progression to cirrhosis or later stages of the disease. Herein, we have conducted the first comprehensive time-course study of lipids using novel state-of-the art lipidomics methods in plasma and liver in the early stages of a mouse model of AFLD, i.e., Lieber-DeCarli diet model. In ethanol-treated mice, changes in liver tissue included up-regulation of triglycerides (TGs) and oxidized TGs and down-regulation of phosphatidylcholine, lysophosphatidylcholine, and 20-22-carbon-containing lipid-mediator precursors. An increase in oxidized TGs preceded histological signs of early AFLD, i.e., steatosis, with these changes observed in both the liver and plasma. The major lipid classes dysregulated by ethanol play important roles in hepatic inflammation, steatosis, and oxidative damage. Conclusion: Alcohol consumption alters the liver lipidome before overt histological markers of early AFLD. This introduces the exciting possibility that specific lipids may serve as earlier biomarkers of AFLD than those currently being used

    How do trypanosomes change gene expression in response to the environment?

    Full text link

    A network of assembly factors is involved in remodeling rRNA elements during preribosome maturation

    Get PDF
    Eukaryotic ribosome biogenesis involves ∼200 assembly factors, but how these contribute to ribosome maturation is poorly understood. Here, we identify a network of factors on the nascent 60S subunit that actively remodels preribosome structure. At its hub is Rsa4, a direct substrate of the force-generating ATPase Rea1. We show that Rsa4 is connected to the central protuberance by binding to Rpl5 and to ribosomal RNA (rRNA) helix 89 of the nascent peptidyl transferase center (PTC) through Nsa2. Importantly, Nsa2 binds to helix 89 before relocation of helix 89 to the PTC. Structure-based mutations of these factors reveal the functional importance of their interactions for ribosome assembly. Thus, Rsa4 is held tightly in the preribosome and can serve as a “distribution box,” transmitting remodeling energy from Rea1 into the developing ribosome. We suggest that a relay-like factor network coupled to a mechano-enzyme is strategically positioned to relocate rRNA elements during ribosome maturation

    Pharmacologic inhibition of HNF4α prevents parenteral nutrition associated cholestasis in mice

    No full text
    Abstract Prolonged parenteral nutrition (PN) can lead to PN associated cholestasis (PNAC). Intestinally derived lipopolysaccharides and infused PN phytosterols lead to activation of NFκB, a key factor in PNAC. Our objective was to determine if inhibition of HNF4α could interfere with NFκB to alleviate murine PNAC. We showed that HNF4α antagonist BI6015 (20 mg/kg/day) in DSS-PN (oral DSS x4d followed by Total PN x14d) mice prevented the increased AST, ALT, bilirubin and bile acids and reversed mRNA suppression of hepatocyte Abcg5/8, Abcb11, FXR, SHP and MRP2 that were present during PNAC. Further, NFκB phosphorylation in hepatocytes and its binding to LRH-1 and BSEP promoters in liver, which are upregulated in DSS-PN mice, were inhibited by BI6015 treatment. BI6015 also prevented the upregulation in liver macrophages of Adgre1 (F4/80) and Itgam (CD11B) that occurs in DSS-PN mice, with concomitant induction of anti-inflammatory genes (Klf2, Klf4, Clec7a1, Retnla). In conclusion, HNF4α antagonism attenuates PNAC by suppressing NFκB activation and signaling while inducing hepatocyte FXR and LRH-1 and their downstream bile and sterol transporters. These data identify HNF4α antagonism as a potential therapeutic target for prevention and treatment of PNAC
    corecore