245 research outputs found
Simultaneous maximum-likelihood calibration of odometry and sensor parameters
For a differential-drive mobile robot equipped with an on-board range sensor, there are six parameters to calibrate: three for the odometry (radii and distance between the wheels), and three for the pose of the sensor with respect to the robot frame. This paper describes a method for calibrating all six parameters at the same time, without the need for external sensors or devices. Moreover, it is not necessary to drive the robot along particular trajectories. The available data are the measures of the angular velocities of the wheels and the range sensor readings. The maximum-likelihood calibration solution is found in a closed form
Gait generation via intrinsically stable MPC for a multi-mass humanoid model
We consider the problem of generating a gait with no a priori assigned footsteps while taking into account the contribution of the swinging leg to the total Zero Moment Point (ZMP). This is achieved by considering a multi-mass model of the humanoid and distinguishing between secondary masses with known pre-defined motion and the remaining, primary, masses. In the case of a single primary mass with constant height, it is possible to transform the original gait generation problem for the multi-mass system into a single LIP-like problem. We can then take full advantage of an intrinsically stable MPC framework to generate a gait that takes into account the swinging leg motion
MPC-based humanoid pursuit-evasion in the presence of obstacles
We consider a pursuit-evasion problem between humanoids in the presence of obstacles. In our scenario, the pursuer enters the safety area of the evader headed for collision, while the latter executes a fast evasive motion. Control schemes are designed for both the pursuer and the evader. They are structurally identical, although the objectives are different: the pursuer tries to align its direction of motion with the line- of-sight to the evader, whereas the evader tries to move in a direction orthogonal to the line-of-sight to the pursuer. At the core of the control architecture is a Model Predictive Control scheme for generating a stable gait. This allows for the inclusion of workspace obstacles, which we take into account at two levels: during the determination of the footsteps orientation and as an explicit MPC constraint. We illustrate the results with simulations on NAO humanoids
Repeatable Motion Planning for Redundant Robots over Cyclic Tasks
We consider the problem of repeatable motion planning for redundant robotic systems performing cyclic tasks in the presence of obstacles. For this open problem, we present a control-based randomized planner, which produces closed collision-free paths in configuration space and guarantees continuous satisfaction of the task constraints. The proposed algorithm, which relies on bidirectional search and loop closure in the task-constrained configuration space, is shown to be probabilistically complete. A modified version of the planner is also devised for the case in which configuration-space paths are required to be smooth. Finally, we present planning results in various scenarios involving both free-flying and nonholonomic robots to show the effectiveness of the proposed method
Humanoid gait generation for walk-to locomotion using single-stage MPC
We consider the problem of gait generation for a humanoid robot that must walk to an assigned Cartesian goal. As a first solution, we consider a rather straightforward adaptation of our previous work: An external block produces high-level velocities, which are then tracked by a double-stage intrinsically stable MPC scheme where the orientation of the footsteps is chosen before determining their location and the CoM trajectory. The second solution, which represents the main contribution of the paper, is conceptually different: no high-level velocity is generated, and footstep orientations are chosen at the same time of the other decision variables in a singlestage MPC. This is made possible by carefully redesigning the motion constraints so as to preserve linearity. Preliminary results on a simulated NAO confirm that the single-stage method outperforms the conventional double-stage scheme
Dynamics-aware navigation among moving obstacles with application to ground and flying robots
We present a novel method for navigation of mobile robots in challenging dynamic environments. The method, which is based on Nonlinear Model Predictive Control (NMPC), hinges upon a specially devised constraint for dynamics-aware collision avoidance. In particular, the constraint builds on the notion of avoidable collision state, taking into account the robot actuation capabilities in addition to the robotâobstacle relative distance and velocity. The proposed approach is applied to both ground and flying robots and tested in a variety of static and dynamic environments. Comparative simulations with an NMPC using a purely distance-based collision avoidance constraint confirm the superiority of the dynamics-aware version, especially for high-speed navigation among moving obstacles. Moreover, the results indicate that the method can work with relatively short prediction horizons and is therefore amenable to real-time implementation
Humanoid odometric localization integrating kinematic, inertial and visual information
We present a method for odometric localization of humanoid robots using standard sensing equipment, i.e., a monocular camera, an inertial measurement unit (IMU), joint encoders and foot pressure sensors. Data from all these sources are integrated using the prediction-correction paradigm of the Extended Kalman Filter. Position and orientation of the torso, defined as the representative body of the robot, are predicted through kinematic computations based on joint encoder readings; an asynchronous mechanism triggered by the pressure sensors is used to update the placement of the support foot. The correction step of the filter uses as measurements the torso orientation, provided by the IMU, and the head pose, reconstructed by a VSLAM algorithm. The proposed method is validated on the humanoid NAO through two sets of experiments: open-loop motions aimed at assessing the accuracy of localization with respect to a ground truth, and closed-loop motions where the humanoid pose estimates are used in real-time as feedback signals for trajectory control
Learning soft task priorities for safe control of humanoid robots with constrained stochastic optimization
Multi-task prioritized controllers are able to generate complex robot behaviors that concurrently satisfy several tasks and constraints. To perform, they often require a human expert to define the evolution of the task priorities in time. In a previous paper [1] we proposed a framework to automatically learn the task priorities thanks to a stochastic optimization algorithm (CMA-ES) maximizing the robot performance on a certain behavior. Here, we learn the task priorities that maximize the robot performance, ensuring that the optimized priorities lead to safe behaviors that never violate any of the robot and problem constraints. We compare three constrained variants of CMA-ES on several benchmarks, among which two are new robotics benchmarks of our design using the KUKA LWR. We retain (1+1)-CMA-ES with covariance constrained adaptation [2] as the best candidate to solve our problems, and we show its effectiveness on two whole-body experiments with the iCub humanoid robot
Robust MPC-Based Gait Generation in Humanoids
We introduce a robust gait generation framework for humanoid robots based on our Intrinsically Stable Model Predictive Control (IS-MPC) scheme, which features a stability constraint to guarantee internal stability. With respect to the original version, the new framework adds multiple components addressing the robustness problem from different angles: an observer-based disturbance compensation mechanism; a ZMP constraint restriction that provides robustness with respect to bounded disturbances; and a step timing adaptation module to prevent the loss of feasibility. Simulation and experimental results are presented
- âŠ