64 research outputs found

    Particle emission characteristics of a gas turbine with a double annular combustor

    Get PDF
    The total climate, air quality and health impact of aircraft black carbon (BC) emissions depends on quantity (mass and number concentration), as well as morphology (fractal dimension and surface area) of emitted BC aggregates. This study examines multiple BC emission metrics from a gas turbine with a double annular combustor, CFM56-5B4-2P. As a part of the SAMPLE III.2 campaign, concurrent measurements of particle mobility, particle mass, particle number concentration and mass concentration, as well as collection of transmission electron microscopy (TEM) samples, allowed for characterization of the BC emissions. Mass- and number-based emission indices were strongly influenced by thrust setting during pilot combustion and ranged from <1 to 208 mg/kg-fuel and 3Ă—1012 to 3Ă—1016 particles/kg-fuel, respectively. Mobility measurements indicated that mean diameters ranged from 7-44 nm with a strong dependence on thrust during pilot-only combustion. Using aggregation and sintering theory with empirical effective density relationships, a power law relationship between primary particle diameter and mobility diameter is presented. Mean primary particle diameter ranged from 6-19 nm, however, laser induced incandescence (LII) and mass-mobility calculated primary particle diameters demonstrated opposite trends with thrust setting. Similarly, mass-mobility-calculated aggregate mass specific surface area and LII-measured surface area were not in agreement, indicating both methods need further development and validation before use as quantitative indicators of primary particle diameter and mass-specific surface area.The authors express their gratitude to a number of people and organizations in helping to plan, conduct, finance and provide instruments for this measurement campaign. The 537 European Aviation Safety Agency (EASA) funded the SAMPLE III SC02 campaign (EASA.2010.FC.10, Specific Contract No: SC02). The Federal Office of Civil Aviation, Switzerland (FOCA) was critical in for providing additional financial support and arranging facilities which made this study possible. We also thank the SR Technics test bed staff, including Frithjof Siegerist, for operating the engines and enabling access to the test facility. We thank AVL, Cambustion, Grimm & TSI supplying both instruments and expertise.This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/02786826.2015.107845

    Effect of Operating and Sampling Conditions on the Exhaust Gas Composition of Small-Scale Power Generators

    Get PDF
    Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results

    Risk of urinary bladder cancer: a case-control analysis of industry and occupation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Uncertainty remains about urinary bladder cancer (UBC) risk for many occupations. Here, we investigate the association between occupation, industry and UBC.</p> <p>Methods</p> <p>Lifetime occupational history was collected by in-person interview for 604 newly diagnosed UBC patients and 604 cancer-free controls. Each job title was assigned a two-digit industry code and a three-digit occupation code. Odds ratios (ORs) for UBC associated with ever being employed in an industry or occupation were calculated by unconditional logistic regression adjusting for age, gender and smoking status. We also examined UBC risk by duration of employment (>0 to <10, ≥10 years) in industry or occupation.</p> <p>Results</p> <p>Significantly increased risk of UBC was observed among waiters and bartenders (OR 2.87; 95% CI 1.05 to 7.72) and occupations related to medicine and health (OR 2.17; 95% CI 1.21 to 3.92), agricultural production, livestock and animal specialties (OR 1.90; 95% CI 1.03 to 3.49), electrical assembly, installation and repair (OR 1.69; 95% CI 1.07 to 2.65), communications (OR 1.74; 95% CI 1.00 to 3.01), and health services (OR 1.58; 95% CI 1.02 to 2.44). For these occupations we also observed a significant excess risk of UBC for long-term work (i.e. ≥10 years), with the exception of waiters and bartenders. Employment for 10 years or more was associated with increased risk of UBC in general farmers (OR 9.58; 95% CI 2.18 to 42.05), agricultural production of crops (OR 3.36; 95% CI 1.10 to 10.27), occupations related to bench working (OR 4.76; 95% CI 1.74 to 13.01), agricultural, fishery, forestry & related (OR 4.58; 95% CI 1.97 to 10.65), transportation equipment (OR 2.68; 95% CI 1.03 to 6.97), and structural work (OR 1.85; 95% CI 1.16 to 2.95).</p> <p>Conclusions</p> <p>This study provides evidence of increased risk of UBC for occupations that were previously reported as at-risk. Workers in several occupation and industry groups have a significantly higher risk of UBC, particularly when duration of employment is 10 years or more.</p

    How “Humane” Is Your Endpoint?—Refining the Science-Driven Approach for Termination of Animal Studies of Chronic Infection

    Get PDF
    Public concern on issues such as animal welfare or the scientific validity and clinical value of animal research is growing, resulting in increasing regulatory demands for animal research. Abiding to the most stringent animal welfare standards, while having scientific objectives as the main priority, is often challenging. To do so, endpoints of studies involving severe, progressive diseases need to be established considering how early in the disease process the scientific objectives can be achieved. We present here experimental studies of tuberculosis (TB) in mice as a case study for an analysis of present practice and a discussion of how more refined science-based endpoints can be developed. A considerable proportion of studies in this field involve lethal stages, and the establishment of earlier, reliable indicators of disease severity will have a significant impact on animal welfare. While there is an increasing interest from scientists and industry in moving research in this direction, this is still far from being reflected in actual practice. We argue that a major limiting factor is the absence of data on biomarkers that can be used as indicators of disease severity. We discuss the possibility of complementing the widely used weight loss with other relevant biomarkers and the need for validation of these parameters as endpoints. Promotion of ethical guidelines needs to be coupled with systematic research in order to develop humane endpoints beyond the present euthanasia of moribund animals. Such research, as we propose here for chronic infection, can show the way for the development and promotion of welfare policies in other fields of research. Research on chronic infection relies heavily on the use of animals, as only the integral animal body can model the full aspect of an infection. That animals are generally made to develop a disease in infection studies exacerbates the tension between human benefit and animal well-being, which characterizes all biomedical research with animals. Scientists typically justify animal research with reference to potential human benefits, but if accepting the assumption that human benefits can offset animal suffering, it still needs to be argued that the same benefits could not be achieved with less negative effects on animal welfare. Reducing the animal welfare problems associated with research (“refinement” [1]) is therefore crucial in order to render animal-based research less of an ethical problem and to assure public trust in research. Studies that are designed to measure time of death or survival percentages present a particularly challenging situation in which at least some of the animals are made to die from the disease. These studies are frequent in experimental research on severe infections. The scientific community, industry, and regulatory authorities have responded to the ethical concerns over studies in which animals die from severe disease by developing new policies and guidelines for the implementation of humane endpoints as a key refinement measure (e.g., [2]–[4]). The most widely used definition considers a humane endpoint to be the earliest indicator in an animal experiment of severe pain, severe distress, suffering, or impending death [5], underlining that ideally such indicators should be identified before the onset of the most severe effects. Euthanizing animals, rather than awaiting their “spontaneous” death, is important to avoid unnecessary suffering in studies in which data on survival is thought to be required for scientific or legal reasons. However, several questions remain open regarding how humane endpoints are to be applied to address real animal welfare problems. We used TB experiments in mice as a case study to highlight the potential to establish biomarkers of disease progress that can replace survival time as a measure of disease severity.Fundação para a Ciência e Tecnologia (SFRH/BD/38337/2007)

    Relationship between Exercise Capacity and Brain Size in Mammals

    Get PDF
    A great deal of experimental research supports strong associations between exercise, cognition, neurogenesis and neuroprotection in mammals. Much of this work has focused on neurogenesis in individual subjects in a limited number of species. However, no study to date has examined the relationship between exercise and neurobiology across a wide range of mammalian taxa. It is possible that exercise and neurobiology are related across evolutionary time. To test this hypothesis, this study examines the association between exercise and brain size across a wide range of mammals.Controlling for associations with body size, we examined the correlation between brain size and a proxy for exercise frequency and capacity, maximum metabolic rate (MMR; ml O(2) min(-1)). We collected brain sizes and MMRs from the literature and calculated residuals from the least-squares regression line describing the relationship between body mass and each variable of interest. We then analyzed the correlation between residual brain size and residual MMR both before and after controlling for phylogeny using phylogenetic independent contrasts. We found a significant positive correlation between maximum metabolic rate and brain size across a wide range of taxa.These results suggest a novel hypothesis that links brain size to the evolution of locomotor behaviors in a wide variety of mammalian species. In the end, we suggest that some portion of brain size in nonhuman mammals may have evolved in conjunction with increases in exercise capacity rather than solely in response to selection related to cognitive abilities

    Mass-mobility measurements using a centrifugal particle mass analyzer and differential mobility spectrometer

    No full text
    Mass-mobility measurements using a centrifugal particle mass analyzer (CPMA) and differential mobility spectrometer (DMS) are demonstrated. The CPMA, which classifies an aerosol by massto- charge ratio, is used upstream of aDMS,whichmeasures the mobility size distribution of the mass-classified particles in real-time. This system allows formass-mobilitymeasurements to bemade on transient sources at one particle mass or an entire effective density distribution for steady state sources in minutes. Since the CPMA classifies particles by mass-to-charge ratio and multiply charged particles are present, particles of several different masses will be measured by the DMS. Therefore, a correction scheme is required to make accurate measurements. To validate this measurement scheme, two different CPMA-DMS systems were used to measure the known density of di(2ethylhexyl) sebacate (DEHS). The first system consisted of a CPMA and standard DMS500 (Cambustion). This system measured an average effective density of 1027 kg/m3 or within 12.6% of the accepted value with an estimated uncertainty of 30.1% (with 95% confidence). The second system consisted of a CPMA and modified DMS. The modified DMS was a DMS500 with the corona charger disabled and sample and sheath flow rates lowered, decreasing the uncertainty in the mobility measurement. This system measured an average effective density of 964 kg/m3 or within 5.7% of the accepted value with an uncertainty of 9.5-10.4% depending on particle mobility size. Finally, it was determined that multiple-charge correction and size calibration were required, with each correction causing a maximum change in measured effective density greater than 10%. Copyright © American Association for Aerosol Research

    Morphology and volatility of particulate matter emitted from a gasoline direct injection engine fuelled on gasoline and ethanol blends

    No full text
    The particulate matter emitted from a turbocharged, four cylinder, wall-guided, gasoline direct injection (GDI) engine fuelled with gasoline and ethanol blends was investigated, and characterized by size distribution, mass-mobility exponent, effective density, and volatility using tandem measurements from differential mobility analysers (DMA) and a centrifugal particle mass analyser (CPMA). Three engine loads were tested at 2250 RPM (4%, 13%, and 26% of maximum load) in addition to an idle condition while the engine was fuelled using gasoline mixed with ethanol fractions of 0% (E0), 10% (E10), and 50% (E50) by volume. An increase in engine load increased particle number concentration, although idle produced approximately as many particles as at 13% load. In the majority of cases, an increase in ethanol fraction decreased number concentration. The fraction of the number of particles comprised of only volatile material to total number of particles (number volatile fraction) both overall and as a function of particle mobility-equivalent diameter was under 10 percent at all engine conditions and fuels (measured after a three-way catalytic converter). The size-segregated ratio of the mass of internally mixed volatile material to total particle mass was similarly low. Volatility measurements were conducted using a thermodenuder set to 300°C. Mass-mobility exponent was seen to range between 2.28 and 2.60. Effective density increased with load, and in general mass-mobility exponent increased as well. Effective density decreased with an increase in ethanol fraction and a slight decrease in mass-mobility exponent was also observed for all conditions except idle. No significant changes in effective density, particle size, or number concentration were observed in GDI soot after denuding particle samples
    • …
    corecore