16 research outputs found

    Recognition of BRAF by CDC37 and re‐evaluation of the activation mechanism for the Class 2 BRAF‐L597R mutant

    Get PDF
    The kinome specific co-chaperone, CDC37 (cell division cycle 37), is responsible for delivering BRAF (B-Rapidly Accelerated Fibrosarcoma) to the Hsp90 (heat shock protein 90) complex, where it is then translocated to the RAS (protooncogene product p21) complex at the plasma membrane for RAS mediated dimerization and subsequent activation. We identify a bipartite interaction between CDC37 and BRAF and delimitate the essential structural elements of CDC37 involved in BRAF recognition. We find an extended and conserved CDC37 motif, 20HPNID---SL--W31, responsible for recognizing the C-lobe of BRAF kinase domain, while the c-terminal domain of CDC37 is responsible for the second of the bipartite interaction with BRAF. We show that dimerization of BRAF, independent of nucleotide binding, can act as a potent signal that prevents CDC37 recognition and discuss the implications of mutations in BRAF and the consequences on signaling in a clinical setting, particularly for class 2 BRAF mutations

    HSP90-CDC37-PP5 forms a structural platform for kinase dephosphorylation

    Get PDF
    Activation of client protein kinases by the HSP90 molecular chaperone system is affected by phosphorylation at multiple sites on HSP90, the kinase-specific co-chaperone CDC37, and the kinase client itself. Removal of regulatory phosphorylation from client kinases and their release from the HSP90-CDC37 system depends on the Ser/Thr phosphatase PP5, which associates with HSP90 via its N-terminal TPR domain. Here, we present the cryoEM structure of the oncogenic protein kinase client BRAFV600E bound to HSP90-CDC37, showing how the V600E mutation favours BRAF association with HSP90-CDC37. Structures of HSP90-CDC37-BRAFV600E complexes with PP5 in autoinhibited and activated conformations, together with proteomic analysis of its phosphatase activity on BRAFV600E and CRAF, reveal how PP5 is activated by recruitment to HSP90 complexes. PP5 comprehensively dephosphorylates client proteins, removing interaction sites for regulatory partners such as 14-3-3 proteins and thus performing a ‘factory reset’ of the kinase prior to release

    Identifying Novel Biomarkers Ready for Evaluation in Low-Prevalence Populations for the Early Detection of Upper Gastrointestinal Cancers : A Systematic Review

    Get PDF
    Funding This study and the journal’s rapid service fee were supported by the CanTest Collaborative (funded by Cancer Research UK C8640/A23385) of which Fiona M. Walter is Director, Jon Emery is an Associate Director, Mike Messenger is co-investigator, and Natalia Calanzani and Garth Funston are researchers. The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. Paige Druce, Kristi Milley and Jon Emery are supported by the Cancer Australia Primary Care Collaborative Cancer Clinical Trials Group (PC4). Mike Messenger is funded by the NIHR Leeds In Vitro Diagnostic Co-operative (UK). No Open Access Fee was received by the journal for the publication of this article.Peer reviewedPublisher PD

    Identifying Novel Biomarkers Ready for Evaluation in Low-Prevalence Populations for the Early Detection of Lower Gastrointestinal Cancers: A Systematic Review and Meta-Analysis

    Get PDF
    Abstract: Introduction: Lower gastrointestinal (GI) cancers are a major cause of cancer deaths worldwide. Prognosis improves with earlier diagnosis, and non-invasive biomarkers have the potential to aid with early detection. Substantial investment has been made into the development of biomarkers; however, studies are often carried out in specialist settings and few have been evaluated for low-prevalence populations. Methods: We aimed to identify novel biomarkers for the detection of lower GI cancers that have the potential to be evaluated for use in primary care. MEDLINE, Embase, Emcare and Web of Science were systematically searched for studies published in English from January 2000 to October 2019. Reference lists of included studies were also assessed. Studies had to report on measures of diagnostic performance for biomarkers (single or in panels) used to detect colorectal or anal cancers. We included all designs and excluded studies with fewer than 50 cases/controls. Data were extracted from published studies on types of biomarkers, populations and outcomes. Narrative synthesis was used, and measures of specificity and sensitivity were meta-analysed where possible. Results: We identified 142 studies reporting on biomarkers for lower GI cancers, for 24,844 cases and 45,374 controls. A total of 378 unique biomarkers were identified. Heterogeneity of study design, population type and sample source precluded meta-analysis for all markers except methylated septin 9 (mSEPT9) and pyruvate kinase type tumour M2 (TuM2-PK). The estimated sensitivity and specificity of mSEPT9 was 80.6% (95% CI 76.6–84.0%) and 88.0% (95% CI 79.1–93.4%) respectively; TuM2-PK had an estimated sensitivity of 81.6% (95% CI 75.2–86.6%) and specificity of 80.1% (95% CI 76.7–83.0%). Conclusion: Two novel biomarkers (mSEPT9 and TuM2-PK) were identified from the literature with potential for use in lower-prevalence populations. Further research is needed to validate these biomarkers in primary care for screening and assessment of symptomatic patients

    The use of a risk assessment and decision support tool (CRISP) compared with usual care in general practice to increase risk-stratified colorectal cancer screening: study protocol for a randomised controlled trial.

    Get PDF
    BACKGROUND: Australia and New Zealand have the highest incidence rates of colorectal cancer worldwide. In Australia there is significant unwarranted variation in colorectal cancer screening due to low uptake of the immunochemical faecal occult blood test, poor identification of individuals at increased risk of colorectal cancer, and over-referral of individuals at average risk for colonoscopy. Our pre-trial research has developed a novel Colorectal cancer RISk Prediction (CRISP) tool, which could be used to implement precision screening in primary care. This paper describes the protocol for a phase II multi-site individually randomised controlled trial of the CRISP tool in primary care. METHODS: This trial aims to test whether a standardised consultation using the CRISP tool in general practice (the CRISP intervention) increases risk-appropriate colorectal cancer screening compared to control participants who receive standardised information on cancer prevention. Patients between 50 and 74 years old, attending an appointment with their general practitioner for any reason, will be invited into the trial. A total of 732 participants will be randomised to intervention or control arms using a computer-generated allocation sequence stratified by general practice. The primary outcome (risk-appropriate screening at 12 months) will be measured using baseline data for colorectal cancer risk and objective health service data to measure screening behaviour. Secondary outcomes will include participant cancer risk perception, anxiety, cancer worry, screening intentions and health service utilisation measured at 1, 6 and 12 months post randomisation. DISCUSSION: This trial tests a systematic approach to implementing risk-stratified colorectal cancer screening in primary care, based on an individual's absolute risk, using a state-of-the-art risk assessment tool. Trial results will be reported in 2020. TRIAL REGISTRATION: Australian and New Zealand Clinical Trial Registry, ACTRN12616001573448p . Registered on 14 November 2016
    corecore