4,157 research outputs found
Solution of Orthopositronium lifetime Puzzle
The intrinsic decay rate of orthopositronium formed in powder
is measured using the direct correction method such that the time
dependence of the pick-off annihilation rate is precisely determined. The decay
rate of orthopositronium is found to be , which is consistent with our previous measurements with
about twice the accuracy. Results agree well with the QED
prediction, and also with a result reported very recently using nanoporous
film
Longitudinal spin transfer of Lambda and anti-Lambda in polarized pp collisions at \sqrt s=200 GeV at STAR
We report our measurement on longitudinal spin transfer, D_LL, from high
energy polarized protons to and hyperons in
proton-proton collisions at with the STAR detector at
RHIC. The current measurements cover , pseudorapidity
and transverse momenta up to using the data taken
in 2005. The longitudinal spin transfer is found to be D_LL= -0.03\pm 0.13
(stat) \pm 0.04(syst)\LambdaD_{LL} = -0.12 \pm
0.08(stat) \pm 0.03(syst)\bar{\Lambda} =
0.5 = 3.7 GeV/c$. The prospects with 2009 data and the future
measurements are also given.Comment: 6 pages, 3 figures, presentation at the SPIN2010 International
Symposium, Juelich (Germany), Sep. 27-Oct. 2, 201
Measurement of the analyzing power of proton-carbon elastic scattering in the CNI region at RHIC
The single transverse spin asymmetry, A_N, of the p-carbon elastic scattering
process in the Coulomb Nuclear Interference (CNI) region was measured using an
ultra thin carbon target and polarized proton beam in the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). In 2004, data were
collected to calibrate the p-carbon process at two RHIC energies (24 GeV, 100
GeV). A_N was obtained as a function of momentum transfer -t. The results were
fit with theoretical models which allow us to assess the contribution from a
hadronic spin flip amplitude.Comment: Contribution to the proceedings of the 16th International Spin
Physics Symposium, spin2004 (Trieste
Precise measurement of positronium hyperfine splitting using the Zeeman effect
Positronium is an ideal system for the research of the quantum
electrodynamics (QED) in bound state. The hyperfine splitting (HFS) of
positronium, , gives a good test of the bound state
calculations and probes new physics beyond the Standard Model. A new method of
QED calculations has revealed the discrepancy by 15\,ppm (3.9) of
between the QED prediction and the experimental
average. There would be possibility of new physics or common systematic
uncertainties in the previous all experiments. We describe a new experiment to
reduce possible systematic uncertainties and will provide an independent check
of the discrepancy. We are now taking data and the current result of
has been obtained so far. A measurement with a precision of (ppm) is
expected within a year.Comment: 8 pages, 8 figures, 2 tables, proceeding of LEAP2011, accepted by
Hyperfine Interaction
SUSY physics with early data Understanding ATLAS detector and backgrounds
With the imminent start of the ATLAS data taking in 2007, the well considered strategy is necessary for the good understanding of the detector performance from in situ calibration and the realistic estimation of the Standard Model background. These are urgent issue for the new physics discovery channels especially for the SUSY searches in the early data taking of LHC run. The talk starts with the breif overview of the ATLAS detector and the calibration commissioning, then the realistic background estimation using real data and the matrix element calculation continues. Finally the newly obtained SUSY discovery potential with newly estimated backgrounds is presented
Measurement of high-p_T Single Electrons from Heavy-Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The momentum distribution of electrons from decays of heavy flavor (charm and
beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has
been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider
(RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent
methods have been used to determine the heavy flavor yields, and the results
are in good agreement with each other. A fixed-order-plus-next-to-leading-log
pQCD calculation agrees with the data within the theoretical and experimental
uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys
for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this
energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/-
224^sys micro barns.Comment: 375 authors from 57 institutions, 6 pages, 3 figures. Submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
- …
