49,515 research outputs found

    Bose-Einstein condensation in random directed networks

    Get PDF
    We consider the phenomenon of Bose-Einstein condensation in a random growing directed net- work. The network grows by the addition of vertices and edges. At each time step the network gains a vertex with probabilty p and an edge with probability 1 − p. The new vertex has a fitness (a, b) with probability f(a, b). A vertex with fitness (a, b), in-degree i and out-degree j gains a new incoming edge with rate a(i + 1) and an outgoing edge with rate b(j + 1). The Bose-Einstein condensation occurs as a function of fitness distribution f(a, b)

    Average Continuous Control of Piecewise Deterministic Markov Processes

    Full text link
    This paper deals with the long run average continuous control problem of piecewise deterministic Markov processes (PDMP's) taking values in a general Borel space and with compact action space depending on the state variable. The control variable acts on the jump rate and transition measure of the PDMP, and the running and boundary costs are assumed to be positive but not necessarily bounded. Our first main result is to obtain an optimality equation for the long run average cost in terms of a discrete-time optimality equation related to the embedded Markov chain given by the post-jump location of the PDMP. Our second main result guarantees the existence of a feedback measurable selector for the discrete-time optimality equation by establishing a connection between this equation and an integro-differential equation. Our final main result is to obtain some sufficient conditions for the existence of a solution for a discrete-time optimality inequality and an ordinary optimal feedback control for the long run average cost using the so-called vanishing discount approach.Comment: 34 page

    NLO electroweak corrections in general scalar singlet models

    Full text link
    If no new physics signals are found, in the coming years, at the Large Hadron Collider Run-2, an increase in precision of the Higgs couplings measurements will shift the dicussion to the effects of higher order corrections. In Beyond the Standard Model (BSM) theories this may become the only tool to probe new physics. Extensions of the Standard Model (SM) with several scalar singlets may address several of its problems, namely to explain dark matter, the matter-antimatter asymmetry, or to improve the stability of the SM up to the Planck scale. In this work we propose a general framework to calculate one loop-corrections in BSM models with an arbitrary number of scalar singlets. We then apply our method to a real and to a complex scalar singlet models. We assess the importance of the one-loop radiative corrections first by computing them for a tree level mixing sum constraint, and then for the main Higgs production process ggHgg \to H. We conclude that, for the currently allowed parameter space of these models, the corrections can be at most a few percent. Notably, a non-zero correction can survive when dark matter is present, in the SM-like limit of the Higgs couplings to other SM particles.Comment: 35 pages, 3 figure

    Mathisson's helical motions demystified

    Full text link
    The motion of spinning test particles in general relativity is described by Mathisson-Papapetrou-Dixon equations, which are undetermined up to a spin supplementary condition, the latter being today still an open question. The Mathisson-Pirani (MP) condition is known to lead to rather mysterious helical motions which have been deemed unphysical, and for this reason discarded. We show that these assessments are unfounded and originate from a subtle (but crucial) misconception. We discuss the kinematical explanation of the helical motions, and dynamically interpret them through the concept of hidden momentum, which has an electromagnetic analogue. We also show that, contrary to previous claims, the frequency of the helical motions coincides exactly with the zitterbewegung frequency of the Dirac equation for the electron.Comment: To appear in the Proceedings of the Spanish Relativity Meeting 2011 (ERE2011), "Towards new paradigms", Madrid 29 August - 2 September 201

    Low mass variable stars in the globular cluster NGC 6397

    Get PDF
    We have conducted a photometric survey of the globular cluster NGC 6397 in a search for variable stars. We obtained ~11h of time-resolved photometric images with one ne European Southern Observatory-Very Large Telescope using the FOcal Reducer and low dispersion Spectrograph imager distributed over two consecutive nights. We analyzed 8391 light curves of stars brighter than magnitude 23 with the 465 nm-filter, and we identified 412 variable stars, reaching ~ 4.8 +- 0.2 per cent of variability with timescales between 0.004 and 2d, with amplitudes variation greater than +- 0.2 mag.Comment: 9 figures, complementary dat

    Spinning particles in general relativity: Momentum-velocity relation for the Mathisson-Pirani spin condition

    Full text link
    The Mathisson-Papapetrou-Dixon (MPD) equations, providing the "pole-dipole" description of spinning test particles in general relativity, have to be supplemented by a condition specifying the worldline that will represent the history of the studied body. It has long been thought that the Mathisson-Pirani (MP) spin condition -- unlike other major choices made in the literature -- does not yield an explicit momentum-velocity relation. We derive here the desired (and very simple) relation and show that it is in fact equivalent to the MP condition. We clarify the apparent paradox between the existence of such a definite relation and the known fact that the MP condition is degenerate (does not specify a unique worldline), thus shedding light on some conflicting statements made in the literature. We then show how, for a given body, this spin condition yields infinitely many possible representative worldlines, and derive a detailed method how to switch between them in a curved spacetime. The MP condition is a convenient choice in situations when it is easy to recognize its "non-helical" solution, as exemplified here by bodies in circular orbits and in radial fall in the Schwarzschild spacetime.Comment: 18 pages, 7 Figures. Slightly improved version, references added, Figure 4 rescaled. Supplemental material is provided in the ancillary files "CircularOrbits.nb" and "AdditionalPlots.pdf". Matches the final published versio
    corecore