4 research outputs found

    Towards High Data Rate Hybrid RF/Optical Lunar Communication Architecture

    Get PDF
    Background Motivation Lunar science and exploration is set to explode in the coming decade. NASA\u27s Artemis Project will send first woman and next man to the moon by 2024 [1]. Dozens of additional Lunar missions are planned by 2028 [2]. Lunar missions will include human crews, rovers, smallSats, and more These missions will require a reliable and high data rate network

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Understanding Surface Roughness of Additively Manufactured Nickel Superalloy for Space Applications

    No full text
    For many applications, including space applications, the usability and performance of a component is dependent on the surface topology of the additively manufactured part. The purpose of this paper is to present an investigation into minimizing the residual surface roughness of direct metal laser sintering (DMLS) samples by manipulating the input process parameters. First, the ability to manipulate surface roughness by modifying processing parameters was explored. Next, the surface topography was characterized to quantify roughness. Finally, microthruster nozzles were created both additively and conventionally for flow testing and comparison. Surface roughness of DMLS samples was found to be highly dependent on the laser power and scan speed. Because of unintended partially sintered particles adhering to the surface, a localized laser fluence mechanism was explored. Experimental results show that surface roughness is influenced by the varied parameters but is not a completely fluence driven process; therefore, a relationship between laser fluence and surface roughness can be incorporated but not completely assumed. Abstract © 2019, Emerald Publishing Limite
    corecore