640 research outputs found

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Mesures précises des propriétés des baryons charmés avec le détecteur LHCb au LHC

    No full text
    Charmed baryon polarization is not predicted by theory and it is a necessary input for the measurement of the charmed baryons magnetic dipole moment (MDM) which is foreseen at the LHC. Baryon’s polarization has been measured for strange (Lambda) and beauty (Lambda_b) baryons in different colliding systems, however, no measurement exists for charmed baryons as of today. In this thesis, the Lambda_c polarization is measured by mean of a five-dimensional amplitude analysis of the three-body weak decay Lc->pKpi of Lc produced in pp collisions at a center of mass energy of 13 TeV.The Lc->pKpi decay passes through intermediate resonant states which interfere with each other, and which need to be included in the amplitude. First, the equations describing the amplitude of this three-body decay have been derived within the helicity formalism. The polarization is accounted for by mean of the spin density matrix and the intermediate resonant states are described using the isobar model factorization. This work allowed to better understand the helicity amplitudes and can be easily extended to other three-body baryonic decays featuring particles with spin in the final state.Then, the helicity amplitudes obtained are used to describe the data collected by the LHCb detector at CERN during the 2016 data taking period (Run 2), corresponding to an integrated luminosity of 1.7 fb^-1. Since the polarization depends on the production mechanism involved, it is important to separate the Lc produced directly after the pp collisions via strong interactions (prompt production), from the Lc produced via a weak decay of other baryons (secondary production). In this analysis, the promptly produced Lc are studied.The Lc->pKpi decay, with a branching ratio of 6.28 +- 0.32 %, is the most abundant Lc decay mode and the final data sample, after the optimization of the selection chain, contains around ~500 000 signal events, it has a signal purity of ~97% and the contamination due to secondary Lc is less than 2 %. The asymmetry parameters of the intermediate decays, which are combinations of the helicity couplings contained in the amplitude, are also measured along with the fit fractions, which describe the contribution of each resonance to the total amplitude. The results of the Lc->pKpi amplitude analysis will be used to measure the polarization of Lc baryons produced in proton gas (pNe) collisions, using a data sample collected by the LHCb detector during 2017 at a center of mass energy of 68 GeV.The next data acquisition phase, foreseen in 2022, will see an increase of the collision rate by a factor of 5 at LHCb. A new detector, called PLUME, has been designed to perform a luminosity measurement in the new running conditions. In this thesis, the front-end electronics of the LHCb calorimeter has been tested to prove that it is adapted for the PLUME detector needs and it is now the baseline electronics for PLUME. Finally, a measurement of the LHCb clock shift using the PLUME detector is proposed. The LHCb clock can be desynchronized from the LHC main clock; a shift up to 1 ns has been measured during Run 1 and Run 2, using the Outer Tracker (OT), with a time resolution of 0.5 ns. During Run 3 the OT will be removed and LHCb will collect data at 40 MHz with a new triggering scheme based on an entirely software trigger. Stable running conditions are essential for such a scheme to work, and the clock shift could have a large impact on the LHCb detector performances. PLUME could be used to monitor the LHCb clock shift and in this thesis a preliminary timing measurement is performed probing the feasibility of such a measurement and opening the route to further studies.La polarisation des baryons charmĂ©s n'est pas prĂ©dite par la thĂ©orie et constitue une donnĂ©e nĂ©cessaire pour la mesure du moment dipolaire magnĂ©tique (MDM) des baryons charmĂ©s qui est prĂ©vue au LHC. Elle a Ă©tĂ© mesurĂ©e pour les baryons Ă©tranges (Lambda) et beaux (Lambda_b) dans diffĂ©rents systĂšmes de collision, mais aucune mesure n'existe Ă  ce jour pour les baryons charmĂ©s. Dans cette thĂšse, la polarisation du baryon Lambda_c est mesurĂ©e au moyen d'une analyse d'amplitude Ă  cinq dimensions de la dĂ©sintĂ©gration faible Ă  trois corps Lc->pKpi pour des Lc produits dans des collisions pp Ă  une Ă©nergie de 13 TeV dans le centre de masse.La dĂ©sintĂ©gration Lc->pKpi passe par des Ă©tats rĂ©sonants intermĂ©diaires qui interfĂšrent entre eux et qui doivent ĂȘtre inclus dans l'amplitude. Tout d'abord, les Ă©quations dĂ©crivant l'amplitude de cette dĂ©sintĂ©gration Ă  trois corps ont Ă©tĂ© dĂ©rivĂ©es dans le cadre du formalisme d’hĂ©licitĂ©. La polarisation est prise en compte au moyen de la matrice de densitĂ© de spin et les Ă©tats rĂ©sonants intermĂ©diaires sont dĂ©crits Ă  l'aide du modĂšle isobare. Ce travail a permis de mieux comprendre les amplitudes d'hĂ©licitĂ© et peut ĂȘtre facilement Ă©tendu Ă  d'autres dĂ©sintĂ©grations baryoniques Ă  trois corps comportant des particules avec spin dans l'Ă©tat final.Ensuite, les amplitudes d'hĂ©licitĂ© obtenues sont utilisĂ©es pour dĂ©crire les donnĂ©es collectĂ©es par le dĂ©tecteur LHCb au CERN en 2016 (Run 2), correspondant Ă  une luminositĂ© intĂ©grĂ©e de 1,7 fb^-1. Comme la polarisation dĂ©pend du mĂ©canisme de production impliquĂ©, il est important de sĂ©parer les Lc produits directement aprĂšs les collisions pp via des interactions fortes (production dite « prompt »), des Lc produits via une dĂ©sintĂ©gration faible d'autres baryons (production secondaire) ; dans cette analyse, les Lc « prompt » sont Ă©tudiĂ©s. La dĂ©sintĂ©gration Lc->pKpi, avec un rapport d'embranchement de 6,28 +- 0,32 %, est le mode de dĂ©sintĂ©gration de Lc le plus abondant et l'Ă©chantillon de donnĂ©es final, aprĂšs l'optimisation de la chaĂźne de sĂ©lection, contient environ ~500 000 Ă©vĂ©nements de signal ; la puretĂ© du signal est de ~97 % et la contamination due aux Lc venant de B est infĂ©rieure Ă  2 %. Les paramĂštres d'asymĂ©trie, qui sont des combinaisons des couplages d'hĂ©licitĂ© contenus dans l'amplitude, sont Ă©galement mesurĂ©s ainsi que les contributions individuelles des rĂ©sonances Ă  l'amplitude totale. Les rĂ©sultats de l'analyse en amplitude de la dĂ©sintĂ©gration Lc->pKpi seront utilisĂ©s pour mesurer la polarisation des Lc produits dans des collisions proton-gaz (pNe), en utilisant un Ă©chantillon de donnĂ©es collectĂ©es par le dĂ©tecteur LHCb en 2017, Ă  une Ă©nergie de 68 GeV dans le centre de masse.La prochaine phase d'acquisition de donnĂ©es, prĂ©vue en 2022, verra une augmentation du taux de collision d'un facteur 5 Ă  LHCb. Un nouveau dĂ©tecteur, appelĂ© PLUME, a Ă©tĂ© conçu pour effectuer une mesure de luminositĂ© dans les nouvelles conditions de fonctionnement. Dans cette thĂšse, l'Ă©lectronique frontale du calorimĂštre de LHCb a Ă©tĂ© testĂ©e pour prouver qu'elle est adaptĂ©e aux besoins du dĂ©tecteur PLUME et elle est maintenant l'Ă©lectronique de base pour PLUME. Enfin, une mesure du dĂ©calage de l'horloge de LHCb Ă  l'aide du dĂ©tecteur PLUME est proposĂ©e. L'horloge de LHCb peut ĂȘtre dĂ©synchronisĂ©e de l'horloge principale du LHC ; un dĂ©calage allant jusqu'Ă  1 ns a Ă©tĂ© mesurĂ© pendant les Run 1 et 2, en utilisant le Outer Tracker (OT), avec une rĂ©solution temporelle de 0,5 ns. Au cours du Run 3, l'OT sera supprimĂ© et LHCb collectera des donnĂ©es Ă  40 MHz avec un nouveau schĂ©ma de dĂ©clenchement entiĂšrement « software ». Des conditions de fonctionnement stables sont essentielles pour qu'un tel schĂ©ma fonctionne, et le dĂ©calage de l'horloge pourrait avoir un impact important sur les performances du dĂ©tecteur LHCb. PLUME pourrait ĂȘtre utilisĂ© pour surveiller le dĂ©calage de l'horloge du LHCb. Dans cette thĂšse, la faisabilitĂ© de la mesure du dĂ©calage en temps est Ă©tudiĂ©e

    SMOG at LHCb: experimental results

    No full text
    We report the latest results obtained by the LHCb experiment in its fixed-target configuration using the System for Measuring Overlap with Gas (SMOG).These results use the pHep\text{He}(2016), pNep\text{Ne}(2017) and PbNe\text{PbNe} (2018) samples collected at a center of mass energy of sNN=110\sqrt{s_\text{NN}}= 110 GeV and sNN=68.5\sqrt{s_\text{NN}}= 68.5 GeV (for pNep\text{Ne} and PbNe\text{PbNe}) respectively. The implications of these experimental results on theory are discussed, with a focus on the impact on quantum chromodynamics (QCD) and on theoretical predictions on the antiprotons flux originating from cosmic rays spallation on the interstellar medium

    Precise measurements of charmed baryon properties with the LHCb detector at the LHC

    No full text
    Charmed baryon polarization is not predicted by theory and it is a necessary input for the measurement of the charmed baryons magnetic dipole moment (MDM) which is foreseen at the LHC. Baryon's polarization has been measured for strange (Λ\Lambda) and beauty (Λb0\Lambda^0_b) baryons in different colliding systems, however, no measurement exists for charmed baryons as of today. In this thesis, the Λc+\Lambda_c^+ polarization is measured by means of a five-dimensional amplitude analysis of the three-body weak decay Λc+→pK−π+\Lambda_c^+\rightarrow pK^-\pi^+ of Λc+\Lambda_c^+ produced in pppp collisions at a center of mass energy of 13 TeV. The Λc+→pK−π+\Lambda_c^+\rightarrow pK^-\pi^+ decay passes through intermediate resonant states which interfere with each other, and which need to be included in the amplitude. First, the equations describing the amplitude of this three-body decay have been derived within the helicity formalism. The polarization is accounted for by means of the spin density matrix and the intermediate resonant states are described using the isobar model factorization. This work allowed to better understand the helicity amplitudes and can be easily extended to other three-body baryonic decays featuring particles with spin in the final state. The helicity amplitudes obtained are used to describe the data collected by the LHCb detector at CERN during the 2016 data taking period (Run 2), corresponding to an integrated luminosity of 1.7fb−11.7fb^{-1}. The analysis is performed on Λc+\Lambda_c^+ produced directly after the pppp collisions via strong interactions (prompt production). The next data acquisition phase, foreseen in 2022, will see an increase of the collision rate by a factor of 5 at LHCb. A new detector, PLUME, has been designed to perform a luminosity measurement in the new running conditions. In this thesis, the front-end electronics of the LHCb calorimeter has been tested to prove that it is adapted for the PLUME detector needs and it is now the baseline electronics for PLUME. Finally, a preliminary measurement of the LHCb clock shift using the PLUME detector is proposed

    Classical and exotic spectroscopy at LHCb

    No full text
    • 

    corecore