10 research outputs found

    Design of a High-Throughput Real-Time PCR System for Detection of Bovine Respiratory and Enteric Pathogens

    Get PDF
    Bovine respiratory and enteric diseases have a profound negative impact on animal, health, welfare, and productivity. A vast number of viruses and bacteria are associated with the diseases. Pathogen detection using real-time PCR (rtPCR) assays performed on traditional rtPCR platforms are costly and time consuming and by that limit the use of diagnostics in bovine medicine. To diminish these limitations, we have developed a high-throughput rtPCR system (BioMark HD; Fluidigm) for simultaneous detection of the 11 most important respiratory and enteric viral and bacterial pathogens. The sensitivity and specificity of the rtPCR assays on the high-throughput platform was comparable with that of the traditional rtPCR platform. Pools consisting of positive and negative individual field samples were tested in the high-throughput rtPCR system in order to investigate the effect of an individual sample in a pool. The pool tests showed that irrespective of the size of the pool, a high-range positive individual sample had a high influence on the cycle quantification value of the pool compared with the influence of a low-range positive individual sample. To validate the test on field samples, 2,393 nasal swab and 2,379 fecal samples were tested on the high-throughput rtPCR system as pools in order to determine the occurrence of the 11 pathogens in 100 Danish herds (83 dairy and 17 veal herds). In the dairy calves, Pasteurella multocida (38.4%), rotavirus A (27.4%), Mycoplasma spp. (26.2%), and Trueperella pyogenes (25.5%) were the most prevalent pathogens, while P. multocida (71.4%), Mycoplasma spp. (58.9%), Mannheimia haemolytica (53.6%), and Mycoplasma bovis (42.9%) were the most often detected pathogens in the veal calves. The established high-throughput system provides new possibilities for analysis of bovine samples, since the system enables testing of multiple samples for the presence of different pathogens in the same analysis test even with reduced costs and turnover time

    Characterization of Influenza D Virus in Danish Calves

    No full text
    Influenza D virus (IDV) was first described in 2011 and has been found to mainly circulate among cattle and swine populations worldwide. Nasal swab samples were collected from 100 Danish calf herds (83 dairy and 17 veal herds) from 2018–2020. Influenza D virus was detected in 12 of the herds. Samples with the lowest cycle quantification value were selected for full genome sequencing. A hemagglutinin-esterase fusion (HEF) gene sequence from a Danish IDV collected in 2015 was also included in this study. Phylogenetic analysis showed that viruses from seven of the IDV-positive herds belonged to the D/OK lineage and clustered together in the HEF tree with the IDV collected in 2015. Viruses from the four other herds belonged to the D/660 lineage, where three of the viruses clustered closely together, while the fourth virus was more phylogenetically distant in all gene segments. The high level of genetic similarity between viruses from two different herds involved in calf trading suggests that transmission occurred through the movement of calves. This study is, to our knowledge, the first to describe the characterization of IDV in calves in Denmark

    Estimating Clinically Relevant Cut-Off Values for a High-Throughput Quantitative Real-Time PCR Detecting Bacterial Respiratory Pathogens in Cattle

    No full text
    Bovine respiratory disease (BRD) results from interactions between pathogens, environmental stressors, and host factors. Obtaining a diagnosis of the causal pathogens is challenging but the use of high-throughput real-time PCR (rtPCR) may help target preventive and therapeutic interventions. The aim of this study was to improve the interpretation of rtPCR results by analysing their associations with clinical observations. The objective was to develop and illustrate a field-data driven statistical method to guide the selection of relevant quantification cycle cut-off values for pathogens associated with BRD for the high-throughput rtPCR system “Fluidigm BioMark HD” based on nasal swabs from calves. We used data from 36 herds enrolled in a Danish field study where 340 calves within pre-determined age-groups were subject to clinical examination and nasal swabs up to four times. The samples were analysed with the rtPCR system. Each of the 1,025 observation units were classified as sick with BRD or healthy, based on clinical scores. The optimal rtPCR results to predict BRD were investigated for Pasteurella multocida, Mycoplasma bovis, Histophilus somni, Mannheimia haemolytica, and Trueperella pyogenes by interpreting scatterplots and results of mixed effects logistic regression models. The clinically relevant rtPCR cut-off suggested for P. multocida and M. bovis was ≀ 21.3. For H. somni it was ≀ 17.4, while no cut-off could be determined for M. haemolytica and T. pyogenes. The demonstrated approach can provide objective support in the choice of clinically relevant cut-offs. However, for robust performance of the regression model sufficient amounts of suitable data are required

    Table_1_Subtyping of Swine Influenza Viruses Using a High-Throughput Real-Time PCR Platform.docx

    No full text
    <p>Influenza A viruses (IAVs) are important human and animal pathogens with high impact on human and animal health. In Denmark, a passive surveillance program for IAV in pigs has been performed since 2011, where screening tests and subsequent subtyping are performed by reverse transcription quantitative real-time PCR (RT-qPCR). A disadvantage of the current subtyping system is that several assays are needed to cover the wide range of circulating subtypes, which makes the system expensive and time-consuming. Therefore, the aim of the present study was to develop a high-throughput method, which could improve surveillance of swine influenza viruses (swIAVs) and lower the costs of virus subtyping. Twelve qPCR assays specific for various hemagglutinin and neuraminidase gene lineages relevant for swIAV and six assays specific for the internal genes of IAV were developed and optimized for the high-throughput qPCR platform BioMark (Fluidigm). The qPCR assays were validated and optimized to run under the same reaction conditions using a 48.48 dynamic array (48.48DA). The sensitivity and specificity was assessed by testing virus isolates and field samples with known subtypes. The results revealed a performance of the swIAV 48.48DA similar to conventional real-time analysis, and furthermore, the specificity of swIAV 48.48DA was very high and without cross reactions between the assays. This high-throughput system provides a cost-effective alternative for subtyping of swIAVs.</p

    The role of chemical antifouling defence in the invasion success of Sargassum muticum: A comparison of native and invasive brown algae.

    No full text
    Competition and fouling defence are important traits that may facilitate invasions by non-indigenous species. The 'novel weapons hypothesis' (NWH) predicts that the invasive success of exotic species is closely linked to the possession of chemical defence compounds that the recipient community in the new range is not adapted to. In order to assess whether chemical defence traits contribute to invasion success, anti-bacterial, anti-quorum sensing, anti-diatom, anti-larval and anti-algal properties were investigated for the following algae: a) the invasive brown alga Sargassum muticum from both, its native (Japan) and invasive (Germany) range, b) the two non- or weak invasive species Sargassum fusiforme and Sargassum horneri from Japan, and c) Fucus vesiculosus, a native brown alga from Germany. Crude and surface extracts and lipid fractions of active extracts were tested against common fouling organisms and zygotes of a dominant competing brown alga. Extracts of the native brown alga F. vesiculosus inhibited more bacterial strains (75%) than any of the Sargassum spp. (17 to 29%). However, Sargassum spp. from Japan exhibited the strongest settlement inhibition against the diatom Cylindrotheca closterium, larvae of the bryozoan Bugula neritina and zygotes of the brown alga F. vesiculosus. Overall, extracts of S. muticum from the invasive range were less active compared to those of the native range suggesting an adaptation to lower fouling pressure and competition in the new range resulting in a shift of resource allocation from costly chemical defence to reproduction and growth. Non-invasive Sargassum spp. from Japan was equally defended against fouling and competitors like S. muticum from Japan indicating a necessity to include these species in European monitoring programs. The variable antifouling activity of surface and crude extracts highlights the importance to use both for an initial screening for antifouling activity

    Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems

    No full text
    Microorganisms play a fundamental role in the functioning and stability of coral reef ecosystems. However, environmental disturbances can trigger alterations to the natural microbial community composition and their functional traits with potentially detrimental consequences for host organisms, such as corals, sponges and algae and concomitant implications for the entire coral reef ecosystem. Coral reefs are increasingly affected by localized impacts such as declining water quality and global pressures derived from human-induced climate change, which severely alters the natural conditions on reefs and can push dominating benthic life forms towards the limit of their resistance and resilience. Microorganisms can respond very rapidly to these altered environmental conditions so defining their natural variability over spatial and temporal gradients is critical for early and accurate identification of environmental disturbances. The rapid response of microbes to environmental change is likely to confer significant advantages over traditional reef monitoring methods, which are based on visual signs of health deterioration in benthic coral reef macroorganisms. This review discusses the potential of microbes as early warning indicators for environmental stress and coral reef health and proposes priorities for future research

    Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems

    No full text
    corecore