2 research outputs found

    Molecular Rotors for Universal Quantitation of Nanoscale Hydrophobic Interfaces in Microplate Format

    No full text
    Hydrophobic self-assembly pairs diverse chemical precursors and simple formulation processes to access a vast array of functional colloids. Exploration of this design space, however, is stymied by lack of broadly general, high-throughput colloid characterization tools. Here, we show that a narrow structural subset of fluorescent, zwitterionic molecular rotors, dialkylaminostilbazolium sulfonates [DASS] with intermediate-length alkyl tails, fills this major analytical void by quantitatively sensing hydrophobic interfaces in microplate format. DASS dyes supersede existing interfacial probes by avoiding off-target fluorogenic interactions and dye aggregation while preserving hydrophobic partitioning strength. To illustrate the generality of this approach, we demonstrate (i) a microplate-based technique for measuring mass concentration of small (20–200 nm), dilute (submicrogram sensitivity) drug delivery nanoparticles; (ii) elimination of particle size, surfactant chemistry, and throughput constraints on quantifying the complex surfactant/metal oxide adsorption isotherms critical for environmental remediation and enhanced oil recovery; and (iii) more reliable self-assembly onset quantitation for chemically and structurally distinct amphiphiles. These methods could streamline the development of nanotechnologies for a broad range of applications

    Design of Insulin-Loaded Nanoparticles Enabled by Multistep Control of Nanoprecipitation and Zinc Chelation

    No full text
    Nanoparticle (NP) carriers provide new opportunities for controlled delivery of drugs, and have potential to address challenges such as effective oral delivery of insulin. However, due to the difficulty of efficiently loading insulin and other proteins inside polymeric NPs, their use has been mostly restricted to the encapsulation of small molecules. To better understand the processes involved in encapsulation of proteins in NPs, we study how buffer conditions, ionic chelation, and preparation methods influence insulin loading in poly­(lactic-<i>co</i>-glycolic acid)-<i>b</i>-poly­(ethylene glycol) (PLGA–PEG) NPs. We report that, although insulin is weakly bound and easily released from the NPs in the presence of buffer ions, insulin loading can be increased by over 10-fold with the use of chelating zinc ions and by the optimization of the pH during nanoprecipitation. We further provide ways of changing synthesis parameters to control NP size while maintaining high insulin loading. These results provide a simple method to enhance insulin loading of PLGA–PEG NPs and provide insights that may extend to other protein drug delivery systems that are subject to limited loading
    corecore