385 research outputs found

    Analysis of the Impact of Urbanization and Enhanced Incomes on Demand for Food Quality in Hanoi

    Get PDF
    This study relates the demand for quality foods in Hanoi in terms of its nutritional composition, diversity, price, processing stage, source, and extent eaten outside home with urbanization and enhanced incomes. The vast differences in these foods quality parameters across different socioeconomic groups and regions in and around Hanoi city suggest the changing nature of the food quality with increased income and urbanization. One lesson learned from this analysis is that urbanization and increased income may not necessarily bring all positive changes in food quality. While the diet becomes more balanced in terms of micronutrient, the increased demand for fat-based calories, processed and restaurant foods, and drift away from fresh sources of farm and home-garden foods raised alarm for food quality and safety. These trends provide a space for government policies to intervene for the purpose of maintaining hygiene standards of food and public health.Demand and Price Analysis, Food Consumption/Nutrition/Food Safety,

    Dilaton in Two-Time Physics as trigger of electroweak phase transition and inflation

    Full text link
    Within the SP(2, R) symmetry, the Two-time model (2T model) has six dimension with two time dimensions. The model has a dilaton particle that makes the symmetry breaking differently from the Standard Model. By reducing the 2T metric to the Minkowski one (1T metric), we consider the electroweak phase transition picture in the 2T model with the dilaton as the trigger. Our analysis shows that Electro-weak Phase Transition (EWPT) is a first-order phase transition at the 200200 GeV scale, its strength is about 13.081 - 3.08 and the mass of dilaton is in interval [345,625][345, 625] GeV. Furthermore, the metric of 2T model can be reduced to the Randall-Sundrum model, so the dilaton acts as inflaton with the slow-roll approximation. Therefore the 2T-model indirectly suggests that extra-dimension can be also a source of EWPT and inflation. The EWPT problem can be used to determine scale parameters that refer to relationships between two metrics.Comment: 25 pages, 2 figure

    On the Total Energy Efficiency of Cell-Free Massive MIMO

    Get PDF
    We consider the cell-free massive multiple-input multiple-output (MIMO) downlink, where a very large number of distributed multiple-antenna access points (APs) serve many single-antenna users in the same time-frequency resource. A simple (distributed) conjugate beamforming scheme is applied at each AP via the use of local channel state information (CSI). This CSI is acquired through time-division duplex operation and the reception of uplink training signals transmitted by the users. We derive a closed-form expression for the spectral efficiency taking into account the effects of channel estimation errors and power control. This closed-form result enables us to analyze the effects of backhaul power consumption, the number of APs, and the number of antennas per AP on the total energy efficiency, as well as, to design an optimal power allocation algorithm. The optimal power allocation algorithm aims at maximizing the total energy efficiency, subject to a per-user spectral efficiency constraint and a per-AP power constraint. Compared with the equal power control, our proposed power allocation scheme can double the total energy efficiency. Furthermore, we propose AP selections schemes, in which each user chooses a subset of APs, to reduce the power consumption caused by the backhaul links. With our proposed AP selection schemes, the total energy efficiency increases significantly, especially for large numbers of APs. Moreover, under a requirement of good quality-of-service for all users, cell-free massive MIMO outperforms the colocated counterpart in terms of energy efficiency

    Mirror Prox Algorithm for Large-Scale Cell-Free Massive MIMO Uplink Power Control

    Full text link
    We consider the problem of max-min fairness for uplink cell-free massive multiple-input multiple-output (MIMO) subject to per-user power constraints. The standard framework for solving the considered problem is to separately solve two subproblems: the receiver filter coefficient design and the power control problem. While the former has a closed-form solution, the latter has been solved using either second-order methods of high computational complexity or a first-order method that provides an approximate solution. To deal with these drawbacks of the existing methods, we propose a mirror prox based method for the power control problem by equivalently reformulating it as a convex-concave problem and applying the mirror prox algorithm to find a saddle point. The simulation results establish the optimality of the proposed solution and demonstrate that it is more efficient than the known methods. We also conclude that for large-scale cell-free massive MIMO, joint optimization of linear receive combining and power control provides significantly better user fairness than the power control only scheme in which receiver coefficients are fixed to unity.Comment: in IEEE Communications Letters, 202

    A general formula for the index of depth stability of edge ideals

    Full text link
    By a classical result of Brodmann, the function depthR/It\operatorname{depth} R/I^t is asymptotically a constant, i.e. there is a number ss such that depthR/It=depthR/Is\operatorname{depth} R/I^t = \operatorname{depth} R/I^s for t>st > s. One calls the smallest number ss with this property the index of depth stability of II and denotes it by dstab(I)\operatorname{dstab}(I). This invariant remains mysterious til now. The main result of this paper gives an explicit formula for dstab(I)\operatorname{dstab}(I) when II is an arbitrary ideal generated by squarefree monomials of degree 2. That is the first general case where one can characterize dstab(I)\operatorname{dstab}(I) explicitly. The formula expresses dstab(I)\operatorname{dstab}(I) in terms of the associated graph. The proof involves new techniques which relate different topics such as simplicial complexes, systems of linear inequalities, graph parallelizations, and ear decompositions. It provides an effective method for the study of powers of edge ideals.Comment: 23 pages, 4 figure
    corecore