23 research outputs found

    The uORF-containing thrombopoietin mRNA escapes nonsense-mediated decay (NMD)

    Get PDF
    Platelet production is induced by the cytokine thrombopoietin (TPO). It is physiologically critical that TPO expression is tightly regulated, because lack of TPO causes life-threatening thrombocytopenia while an excess of TPO results in thrombocytosis. The plasma concentration of TPO is controlled by a negative feedback loop involving receptor-mediated uptake of TPO by platelets. Furthermore, TPO biosynthesis is limited by upstream open reading frames (uORFs) that curtail the translation of the TPO mRNA. uORFs are suggested to activate RNA degradation by nonsense-mediated decay (NMD) in a number of physiological transcripts. Here, we determine whether NMD affects TPO expression. We show that reporter mRNAs bearing the seventh TPO uORF escape NMD. Importantly, endogenously expressed TPO mRNA from HuH7 cells is unaffected by abrogation of NMD by RNAi. Thus, regulation of TPO expression is independent of NMD, implying that mRNAs bearing uORFs cannot generally be considered to represent NMD targets

    UPF1-Mediated RNA Decay—Danse Macabre in a Cloud

    No full text
    Nonsense-mediated RNA decay (NMD) is the prototype example of a whole family of RNA decay pathways that unfold around a common central effector protein called UPF1. While NMD in yeast appears to be a linear pathway, NMD in higher eukaryotes is a multifaceted phenomenon with high variability with respect to substrate RNAs, degradation efficiency, effector proteins and decay-triggering RNA features. Despite increasing knowledge of the mechanistic details, it seems ever more difficult to define NMD and to clearly distinguish it from a growing list of other UPF1-mediated RNA decay pathways (UMDs). With a focus on mammalian NMD, we here critically examine the prevailing NMD models and the gaps and inconsistencies in these models. By exploring the minimal requirements for NMD and other UMDs, we try to elucidate whether they are separate and definable pathways, or rather variations of the same phenomenon. Finally, we suggest that the operating principle of the UPF1-mediated decay family could be considered similar to that of a computing cloud providing a flexible infrastructure with rapid elasticity and dynamic access according to specific user needs

    Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation

    No full text
    The exon–junction complex (EJC) components hUpf3a and hUpf3b serve a dual function: They promote nonsense-mediated mRNA decay (NMD), and they also regulate translation efficiency. Whether these two functions are interdependent or independent of each other is unknown. We characterized the function of the hUpf3 proteins in a λN/boxB-based tethering system. Despite the high degree of sequence similarity between hUpf3b and hUpf3a, hUpf3a is much less active than hUpf3b to induce NMD and to stimulate translation. We show that induction of NMD by hUpf3 proteins requires interaction with Y14, Magoh, BTZ, and eIF4AIII. The protein region that mediates this interaction and discriminates between hUpf3a and hUpf3b in NMD function is located in the C-terminal domain and fully contained within a small sequence that is highly conserved in Upf3b but not Upf3a proteins. Stimulation of translation is independent of this interaction and is determined by other regions of the hUpf3 protein, indicating the presence of different downstream pathways of hUpf3 proteins either in NMD or in translation

    Splicing and 3′ end formation in the definition of nonsense-mediated decay-competent human β-globin mRNPs

    No full text
    Premature translation termination codons are common causes of genetic disorders. mRNAs with such mutations are degraded by a surveillance mechanism termed nonsense-mediated decay (NMD), which represents a phylogenetically widely conserved post-transcriptional mechanism for the quality control of gene expression. How NMD-competent mRNPs are formed and specified remains a central question. Here, we have used human β-globin mRNA as a model system to address the role of splicing and polyadenylation for human NMD. We show that (i) splicing is an indispensable component of the human β-globin NMD pathway, which cannot be compensated for by exonic β-globin ‘failsafe’ sequences; (ii) the spatial requirements of human β-globin NMD, as signified by the maximal distance of the nonsense mutation to the final exon–exon junction, are less constrained than in yeast; and (iii) non-polyadenylated mRNAs with a histone 3′ end are NMD competent. Thus, the formation of NMD-competent mRNP particles critically depends on splicing but does not require the presence of a poly(A) tail
    corecore