38 research outputs found

    Investigation of Alterations in Brain White Matter of Individuals Diagnosed with Smith-Lemli-Opitz Syndrome and Sjögren-Larsson Syndrome

    Get PDF
    Advisor: Igor NestrasilThis research was supported by the Undergraduate Research Opportunities Program (UROP)

    Neurocognition across the spectrum of mucopolysaccharidosis type I: Age, severity, and treatment

    Full text link
    OBJECTIVES: Precise characterization of cognitive outcomes and factors that contribute to cognitive variability will enable better understanding of disease progression and treatment effects in mucopolysaccharidosis type I (MPS I). We examined the effects on cognition of phenotype, genotype, age at evaluation and first treatment, and somatic disease burden. METHODS: Sixty patients with severe MPS IH (Hurler syndrome treated with hematopoietic cell transplant and 29 with attenuated MPS I treated with enzyme replacement therapy), were studied with IQ measures, medical history, genotypes. Sixty-seven patients had volumetric MRI. Subjects were grouped by age and phenotype and MRI and compared to 96 normal controls. RESULTS: Prior to hematopoietic cell transplant, MPS IH patients were all cognitively average, but post-transplant, 59% were below average, but stable. Genotype and age at HCT were associated with cognitive ability. In attenuated MPS I, 40% were below average with genotype and somatic disease burden predicting their cognitive ability. White matter volumes were associated with IQ for controls, but not for MPS I. Gray matter volumes were positively associated with IQ in controls and attenuated MPS I patients, but negatively associated in MPS IH. CONCLUSIONS: Cognitive impairment, a major difficulty for many MPS I patients, is associated with genotype, age at treatment and somatic disease burden. IQ association with white matter differed from controls. Many attenuated MPS patients have significant physical and/or cognitive problems and receive insufficient support services. Results provide direction for future clinical trials and better disease management

    Low-cost, rapidly-developed, 3D printed in vitro corpus callosum model for mucopolysaccharidosis type I [version 2; referees: 2 approved]

    No full text
    The rising prevalence of high throughput screening and the general inability of (1) two dimensional (2D) cell culture and (2) in vitro release studies to predict in vivo neurobiological and pharmacokinetic responses in humans has led to greater interest in more realistic three dimensional (3D) benchtop platforms. Advantages of 3D human cell culture over its 2D analogue, or even animal models, include taking the effects of microgeometry and long-range topological features into consideration. In the era of personalized medicine, it has become increasingly valuable to screen candidate molecules and synergistic therapeutics at a patient-specific level, in particular for diseases that manifest in highly variable ways. The lack of established standards and the relatively arbitrary choice of probing conditions has limited in vitro drug release to a largely qualitative assessment as opposed to a predictive, quantitative measure of pharmacokinetics and pharmacodynamics in tissue. Here we report the methods used in the rapid, low-cost development of a 3D model of a mucopolysaccharidosis type I patient’s corpus callosum, which may be used for cell culture and drug release. The CAD model is developed from in vivo brain MRI tracing of the corpus callosum using open-source software, printed with poly (lactic-acid) on a Makerbot Replicator 5X, UV-sterilized, and coated with poly (lysine) for cellular adhesion. Adaptations of material and 3D printer for expanded applications are also discussed

    Long-term cognitive and somatic outcomes of enzyme replacement therapy in untransplanted Hurler syndrome

    No full text
    Mucopolysaccharidosis type I (MPS I) was added to the Recommended Uniform Screening Panel for newborn screening in 2016, highlighting recognition that early treatment of MPS I is critical to stem progressive, irreversible disease manifestations. Enzyme replacement therapy (ERT) is an approved treatment for all MPS I phenotypes, but because the severe form (MPS IH, Hurler syndrome) involves rapid neurocognitive decline, the impermeable blood-brain-barrier is considered an obstacle for ERT. Instead, hematopoietic cell transplantation (HCT) has long been recommended, as it is believed to be the only therapy that arrests neurocognitive decline. Yet ERT monotherapy has never been compared to HCT, because it is unethically unacceptable to evaluate a therapeutic alternative to one shown to treat Central Nervous System (CNS) disease. An unusual opportunity to address this question is presented with this clinical report of a 16-year-old female with MPS IH treated only with ERT since her diagnosis at age 2. Neurological functioning was stable until cervical spinal cord compression at age 8, hydrocephalus at age 11, and neurocognitive declines beginning at age 10. Somatic disease burden is significant for first degree AV block, restrictive lung disease, bilateral hearing loss, severe corneal clouding, joint pain/limitations requiring mobility assistance, and short stature. This patient's extended survival and prolonged intact neurocognitive functioning depart from the untreated natural history of MPS IH. Disease burden typically controlled by HCT emerged. Although not anticipated to provide benefit for CNS disease, ERT may have provided some amelioration or slowing of neurocognitive deterioration

    Low-cost, rapidly-developed, 3D printed in vitro corpus callosum model for mucopolysaccharidosis type I [version 1; referees: 2 approved]

    No full text
    The rising prevalence of high throughput screening and the general inability of (1) two dimensional (2D) cell culture and (2) in vitro release studies to predict in vivo neurobiological and pharmacokinetic responses in humans has led to greater interest in more realistic three dimensional (3D) benchtop platforms. Advantages of 3D human cell culture over its 2D analogue, or even animal models, include taking the effects of microgeometry and long-range topological features into consideration. In the era of personalized medicine, it has become increasingly valuable to screen candidate molecules and synergistic therapeutics at a patient-specific level, in particular for diseases that manifest in highly variable ways. The lack of established standards and the relatively arbitrary choice of probing conditions has limited in vitro drug release to a largely qualitative assessment as opposed to a predictive, quantitative measure of pharmacokinetics and pharmacodynamics in tissue. Here we report the methods used in the rapid, low-cost development of a 3D model of a mucopolysaccharidosis type I patient’s corpus callosum, which may be used for cell culture and drug release. The CAD model is developed from in vivo brain MRI tracing of the corpus callosum using open-source software, printed with poly (lactic-acid) on a Makerbot Replicator 5X, UV-sterilized, and coated with poly (lysine) for cellular adhesion. Adaptations of material and 3D printer for expanded applications are also discussed

    Spinal cord atrophy as a measure of severity of myelopathy in adrenoleukodystrophy

    No full text
    All men and most women with X-linked adrenoleukodystrophy (ALD) develop myelopathy in adulthood. As clinical trials with new potential disease-modifying therapies are emerging, sensitive outcome measures for quantifying myelopathy are needed. This prospective cohort study evaluated spinal cord size (cross-sectional area - CSA) and shape (eccentricity) as potential new quantitative outcome measures for myelopathy in ALD. Seventy-four baseline magnetic resonance imaging (MRI) scans, acquired in 42 male ALD patients and 32 age-matched healthy controls, and 26 follow-up scans of ALD patients were included in the study. We used routine T 1-weighted MRI sequences to measure mean CSA, eccentricity, right-left and anteroposterior diameters in the cervical spinal cord. We compared MRI measurements between groups and correlated CSA with clinical outcome measures of disease severity. Longitudinally, we compared MRI measurements between baseline and 1-year follow-up. CSA was significantly smaller in patients compared to controls on all measured spinal cord levels (P <.001). The difference was completely explained by the effect of the symptomatic subgroup. Furthermore, the spinal cord showed flattening (higher eccentricity and smaller anteroposterior diameters) in patients. CSA correlated strongly with all clinical measures of severity of myelopathy. There was no detectable change in CSA after 1-year follow-up. The cervical spinal cord in symptomatic ALD patients is smaller and flattened compared to controls, possibly due to atrophy of the dorsal columns. CSA is a reliable marker of disease severity and can be a valuable outcome measure in long-term follow-up studies in ALD. Synopsis: A prospective cohort study in 42 adrenoleukodystrophy (ALD) patients and 32 controls demonstrated that the spinal cord cross-sectional area of patients is smaller compared to healthy controls and correlates with severity of myelopathy in patients, hence it could be valuable as a much needed surrogate outcome measure
    corecore