19 research outputs found

    Transmit array as a viable 3D printing option for backhaul applications at V-band

    Get PDF
    Two designs of high gain dielectric lens for a Vband backhaul antenna, compatible with 3D printing, are compared. The available printing materials still have significant losses, which limit the performance of traditional focusing dielectric lenses, as the dome elliptical lens. Herein, we show that an all-dielectric transmit array can present several mechanical and electrical advantages, especially when high gains are required. We demonstrate that even with a compact transmit array (f/d = 067 it is still possible to comply with the usual bandwidth (57-66 GHz) and gain (>30 dBi) requirements for backhaul applications.info:eu-repo/semantics/acceptedVersio

    Ball Grid Array Module with Integrated Shaped Lens for 5G Backhaul/Fronthaul Communications in F-Band

    Get PDF
    In this paper, we propose a ball grid array (BGA) module with an integrated 3-D-printed plastic lens antenna for application in a dedicated 130 GHz OOK transceiver that targets the area of 5G backhaul/fronthaul systems. The main design goal was the full integration of a small footprint antenna with an energy-efficient transceiver. The antenna system must be compact and cost effective while delivering an approximately 30 dBi gain in the working band, defined as 120 to 140 GHz. Accordingly, a 2×2 array of aperture-coupled patch antennas was designed in the 7×7×0.362 mm3 BGA module as the feed antenna of the lens. This achieved a 7.8 dBi realized gain, broadside polarization purity above 20 dB, and over 55% total efficiency from 110 to 140 GHz (20% bandwidth). A plastic elliptical lens 40 mm in diameter and 42.3 mm in height was placed on top of the BGA module. The antenna achieved a return loss better than ?10 dB and a 28 dBi realized gain from 114 to 140 GHz. Finally, active measurements demonstrated a >12 Gbps Tx/Rx link at 5 m with bit error rate (BER) < 10?6 at 1.6 pJ/b/m. These results pave the way for future cost-effective, energy-efficient, high-data rate backhaul/fronthaul systems for 5G communications.info:eu-repo/semantics/acceptedVersio

    3D-Printed transmit-array antenna for broadband backhaul 5G links at V band

    Get PDF
    The low cost and compactness of transmit-array antennas (TAs) make them attractive for 5G backhaul links. However, the TA advantage is less obvious when considering the broadband operation requirement. Two main factors influence the bandwidth performance, namely: 1) the bandwidth of the unit cells, and 2) the number of 360° phase wrapping zones in the aperture, which are designed for a specific frequency. Herein, we overcome these limitations by using all-dielectric unit cells (inherently broadband) and by developing a general method to quantify and manage the intricate relation between antenna gain, bandwidth, and antenna height. Based on this framework we optimize, as an example, a TA design (focal distance, F=63 mm and aperture diameter D=80 mm ) to comply with typical gain specification for 5G backhaul links (&gt;30 dBi) in the WiGiG band (from 57 to 66 GHz). The feed is a dedicated compact horn (8 ×5×22 mm3) that provides a proper illumination of the aperture. Additive manufacturing is used to simplify the manufacturing process of the antenna. A very good agreement between simulations and experimental results is obtained, achieving good aperture efficiency for this type of antenna (42%), which rivals with existing solutions based on more expensive manufacturing techniques.info:eu-repo/semantics/acceptedVersio
    corecore