21,658 research outputs found

    Intermittent Connectivity for Exploration in Communication-Constrained Multi-Agent Systems

    Get PDF
    Motivated by exploration of communication-constrained underground environments using robot teams, we study the problem of planning for intermittent connectivity in multi-agent systems. We propose a novel concept of information-consistency to handle situations where the plan is not initially known by all agents, and suggest an integer linear program for synthesizing information-consistent plans that also achieve auxiliary goals. Furthermore, inspired by network flow problems we propose a novel way to pose connectivity constraints that scales much better than previous methods. In the second part of the paper we apply these results in an exploration setting, and propose a clustering method that separates a large exploration problem into smaller problems that can be solved independently. We demonstrate how the resulting exploration algorithm is able to coordinate a team of ten agents to explore a large environment

    Lifting Grobner bases from the exterior algebra

    Full text link
    In the article "Non-commutative Grobner bases for commutative algebras", Eisenbud-Peeva-Sturmfels proved a number of results regarding Grobner bases and initial ideals of those ideals in the free associative algebra which contain the commutator ideal. We prove similar results for ideals which contains the anti-commutator ideal (the defining ideal of the exterior algebra). We define one notion of generic initial ideals in the free assoicative algebra, and show that gin's of ideals containing the commutator ideal, or the anti-commutator ideal, are finitely generated.Comment: 6 pages, LaTeX2

    Aerosol formation over the Boreal forest in Hyytiälä, Finland: monthly frequency and annual cycles ? the roles of air mass characteristics and synoptic scale meteorology

    No full text
    International audienceNew atmospheric particles with diameters of 3?10 nm and their subsequent growth to cloud condensation nucleus have been observed at various places in the European boundary layer. These events have been observed simultaneously within wide geographical areas (over 1000 km) in connection to specific weather systems, the cold air behind cyclones. Here we show that atmospheric aerosol formation (i.e. nucleation and initial growth) is favoured by the outbreak of cold Arctic air over northern Europe. Aerosol formation was about twice as common in Arctic air as in sub-Polar air, and even more so compared to other air masses. The most important general factor favouring aerosol formation in Arctic air and marine air was weaker competing condensational sink (CS) for the precursor gases (less pre-existing aerosols), while high CS prevented aerosol formation in heated sub-Polar air and mid-latitude air. High SO2 levels favoured nucleation in continental air and high UV-B radiation in sub-tropical air. The critical factor that determined if aerosol formation would start on a day with Arctic air was the UV-B radiation. The same applied to sub-Polar air and continental air, while increased SO2 concentration could trigger formation in heated sub-Polar and mid-latitude air, and reduced CS could cause formation in mid-latitude, marine or mixed/transient air. We speculate that strong emissions of volatile organic compounds from the Boreal forest and strong boundary layer dynamics may have caused aerosol formation in sub-Polar air masses and air in transition from a marine to a continental character. The monthly frequency of Arctic air masses and the probability for photo-chemically driven aerosol formation explains the observed annual cycle in monthly particle formation frequency as well as much of the inter annual variability. The same cyclones that transport cold, clean air from the Arctic to Europe will also transport warm polluted air in the other direction, which help cause the Arctic Haze phenomena. The cyclones have a key role for the atmospheric aerosol life cycle in mid to high latitudes. Due to the observed growth to the size of CCN in one to two days, there is a potential feed back from the effects on the CCN population and cloud albedo even within the same weather system, but also on the climatic time scale

    The Coulomb impurity problem in graphene

    Full text link
    We address the problem of an unscreened Coulomb charge in graphene, and calculate the local density of states and displaced charge as a function of energy and distance from the impurity. This is done non-perturbatively in two different ways: (1) solving the problem exactly by studying numerically the tight-binding model on the lattice; (2) using the continuum description in terms of the 2D Dirac equation. We show that the Dirac equation, when properly regularized, provides a qualitative and quantitative low energy description of the problem. The lattice solution shows extra features that cannot be described by the Dirac equation, namely bound state formation and strong renormalization of the van Hove singularities.Comment: 3 Figures; minor typo corrections and minor update in Fig. 3

    Electronic structure of GaAs1-xNx alloy by soft-X-ray absorption and emission: Origin of the reduced optical efficiency

    Full text link
    The local electronic structure of N atoms in a diluted GaAs1-xNx (x=3%) alloy, in view of applications in optoelectronics, is determined for the first time using soft-X-ray absorption (SXA) and emission (SXE). Deviations from crystalline GaN, in particular in the conduction band, are dramatic. Employing the orbital character and elemental specificity of the SXE/SXA spectroscopies, we identify a charge transfer from the N atoms at the valence band maximum, reducing the overlap with the wavefunction in conduction band minimum, as the main factor limiting the optical efficiency of GaAs1-xNx alloys. Moreover, a k-conserving process of resonant inelastic x-ray scattering involving the L1 derived valence and conduction states is discovered.Comment: 3 pages, physica status solidi (Rapid Research Notes), in pres

    The state space and physical interpretation of self-similar spherically symmetric perfect-fluid models

    Full text link
    The purpose of this paper is to further investigate the solution space of self-similar spherically symmetric perfect-fluid models and gain deeper understanding of the physical aspects of these solutions. We achieve this by combining the state space description of the homothetic approach with the use of the physically interesting quantities arising in the comoving approach. We focus on three types of models. First, we consider models that are natural inhomogeneous generalizations of the Friedmann Universe; such models are asymptotically Friedmann in their past and evolve fluctuations in the energy density at later times. Second, we consider so-called quasi-static models. This class includes models that undergo self-similar gravitational collapse and is important for studying the formation of naked singularities. If naked singularities do form, they have profound implications for the predictability of general relativity as a theory. Third, we consider a new class of asymptotically Minkowski self-similar spacetimes, emphasizing that some of them are associated with the self-similar solutions associated with the critical behaviour observed in recent gravitational collapse calculations.Comment: 24 pages, 12 figure

    Timelike self-similar spherically symmetric perfect-fluid models

    Get PDF
    Einstein's field equations for timelike self-similar spherically symmetric perfect-fluid models are investigated. The field equations are rewritten as a first-order system of autonomous differential equations. Dimensionless variables are chosen in such a way that the number of equations in the coupled system is reduced as far as possible and so that the reduced phase space becomes compact and regular. The system is subsequently analysed qualitatively using the theory of dynamical systems.Comment: 23 pages, 6 eps-figure

    Towards a practical approach for self-consistent large amplitude collective motion

    Full text link
    We investigate the use of an operatorial basis in a self-consistent theory of large amplitude collective motion. For the example of the pairing-plus-quadrupole model, which has been studied previously at equilibrium, we show that a small set of carefully chosen state-dependent basis operators is sufficient to approximate the exact solution of the problem accuratly. This approximation is used to study the interplay of quadrupole and pairing degrees of freedom along the collective path for realistic examples of nuclei. We show how this leads to a viable calculational scheme for studying nuclear structure, and discuss the surprising role of pairing collapse.Comment: 19 pages, 8 figures Revised version To be published in Phys. Rev.

    Spatially self-similar spherically symmetric perfect-fluid models

    Get PDF
    Einstein's field equations for spatially self-similar spherically symmetric perfect-fluid models are investigated. The field equations are rewritten as a first-order system of autonomous differential equations. Dimensionless variables are chosen in such a way that the number of equations in the coupled system is reduced as far as possible and so that the reduced phase space becomes compact and regular. The system is subsequently analysed qualitatively with the theory of dynamical systems.Comment: 21 pages, 6 eps-figure

    The planet search programme at the ESO CES and HARPS. IV. The search for Jupiter analogues around solar-like stars

    Full text link
    In 1992 we began a precision radial velocity (RV) survey for planets around solar-like stars with the Coude Echelle Spectrograph and the Long Camera (CES LC) at the 1.4 m telescope in La Silla (Chile). We have continued the survey with the upgraded CES Very Long Camera (VLC) and HARPS, both at the 3.6 m telescope, until 2007. The observations for 31 stars cover a time span of up to 15 years and the RV precision permit a search for Jupiter analogues. We perform a joint analysis for variability, trends, periodicities, and Keplerian orbits and compute detection limits. Moreover, the HARPS RVs are analysed for correlations with activity indicators (CaII H&K and CCF shape). We achieve a long-term RV precision of 15 m/s (CES+LC, 1992-1998), 9 m/s (CES+VLC, 1999-2006), and 2.8 m/s (HARPS, 2003-2009, including archive data), resp. This enables us to confirm the known planets around Iota Hor, HR 506, and HR 3259. A steady RV trend for Eps Ind A can be explained by a planetary companion. On the other hand, we find previously reported trends to be smaller for Beta Hyi and not present for Alp Men. The candidate planet Eps Eri b was not detected despite our better precision. Also the planet announced for HR 4523 cannot be confirmed. Long-term trends in several of our stars are compatible with known stellar companions. We provide a spectroscopic orbital solution for the binary HR 2400 and refined solutions for the planets around HR 506 and Iota Hor. For some other stars the variations could be attributed to stellar activity. The occurrence of two Jupiter-mass planets in our sample is in line with the estimate of 10% for the frequency of giant planets with periods smaller than 10 yr around solar-like stars. We have not detected a Jupiter analogue, while the detections limits for circular orbits indicate at 5 AU a sensitivity for minimum mass of at least 1 M_Jup (2 M_Jup) for 13% (61%) of the stars.Comment: 63 pages, 24 figures (+33 online figures), 13 Tables, accepted for publication in A&A (2012-11-13
    corecore