5 research outputs found

    Genetic characterization of antibiotic-resistant Staphylococcus aureus from milk in the North-West Province, South Africa

    No full text
    Food borne diseases are a major public health concern worldwide. Staphylococcus aureus is one of the potential food borne pathogens which causes nosocomial and community acquired infections. In the present study, 74 representative strains of S. aureus isolated and characterized in previous study from different milk samples were subjected to random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) and enterobacterial repetitive intergenic consensus (ERIC)-PCR to generate fingerprints to determine the genetic relationships of the isolated strains. A total of 20 RAPD patterns were generated and the number of amplified fragments obtained ranged from 0 to 8 with molecular weight ranging from 250 to 2000 bp. A dendrogram based on fingerprinting pattern grouped isolates into twelve major clusters (I–XII). In the case of ERIC-PCR 9 banding patterns were obtained with amplicons ranging from 1 to 8 and band sizes ranging from 250 to 2000 bp. A total of four major clusters (I–IV) were observed in the dendrogram based on ERIC fingerprints. The discrete banding patterns obtained both from ERIC-PCR and RAPD-PCR showed remarkably the genetic diversity of S. aureus. The findings of this study indicate that raw, bulk and pasteurized milk in the North-West Province was contaminated with toxigenic and multi-drug resistant S. aureus strains. This emphasizes the need to implement appropriate control measures to reduce contamination as well as the spread of virulent S. aureus strains to reduce the burden of disease in humans. Keywords: ERIC-PCR, Genetic fingerprinting, Milk, RAPD-PCR, Staphylococcus aureu

    Casting Light on the Micro-Organisms in Digestate: Diversity and Untapped Potential

    No full text
    Anaerobic digestion (AD) is an established process for waste conversion to bioenergy. However, for the AD process to be viable, it is imperative that all products be adequately valorized to maximize the benefits associated with the technology and in turn promote economic feasibility and technology uptake. Digestate is a byproduct of the AD process that is oftentimes overshadowed by the primary product, biogas, however the potential of digestate is vast. Digestate is composed of undigested organic matter, inorganic matter, and microorganisms. Whilst digestate has frequently been utilized as a soil amendment due to its abundance of readily available plant nutrients, the microbial content of digestate is oftentimes neglected or undermined. The array of microbes prevalent in digestate may contribute to expanding its potential applications. This microbial composition is shaped by several factors including resident microbial communities in inoculum and feedstock, feedstock composition, temperature of the AD system, AD additives and augmenting agents as well as post-treatment strategies, amongst others. Hence, it is hypothesized that digestate microbial content can be manipulated to target particular downstream applications by altering the above-mentioned factors. In so doing, the value of the produced digestate may be improved, which may even lead to digestate becoming the most lucrative product of the AD process. This review provides a holistic overview of the factors influencing the microbial community structure of digestate, the microorganisms in digestate from diverse AD systems and the associated microbial functionality as well as the potential applications of the digestate from a perspective of the resident microflora. The aim of the paper is to highlight the vast potential of microorganisms in digestate so as to broaden its applicability and value
    corecore