44 research outputs found

    Simulation and Analysis of Uncooled Microbolometer for Serial Readout Architecture

    Get PDF
    A detailed thermal behavior and theoretical analysis of uncooled resistive microbolometer is presented along with the proposed thermal imager simulator. An accurate model of a thermal detector is required to design a readout circuit that can compensate for the noise due to process variability and self-heating. This paper presents a realistic simulation model of microbolometer that addresses the fixed pattern noise, Johnson noise, and self-heating. Different simulations were performed to study the impact of infrared power and bias power on the performance of microbolometers. The microbolometers were biased with different bias currents along with different thermal parameters of the reference microbolometer to analyze the impact of self-heating on the thermal image. The proposed thermal imager simulator is used as a tool to visually analyze the impact of noise on the quality of a thermal image. This simulator not only helps in compensating the noise prior to the implementation in Analog Design Environment, but also can be used as a platform to explore different readout architectures. In this work, serial readout architecture was simulated with a row of blind microbolometers that served as a reference. Moreover, the algorithm for the proposed thermal imager simulator is presented

    Automatic Gender Detection Based on Characteristics of Vocal Folds for Mobile Healthcare System

    Get PDF
    An automatic gender detection may be useful in some cases of a mobile healthcare system. For example, there are some pathologies, such as vocal fold cyst, which mainly occur in female patients. If there is an automatic method for gender detection embedded into the system, it is easy for a healthcare professional to assess and prescribe appropriate medication to the patient. In human voice production system, contribution of the vocal folds is very vital. The length of the vocal folds is gender dependent; a male speaker has longer vocal folds than a female speaker. Due to longer vocal folds, the voice of a male becomes heavy and, therefore, contains more voice intensity. Based on this idea, a new type of time domain acoustic feature for automatic gender detection system is proposed in this paper. The proposed feature measures the voice intensity by calculating the area under the modified voice contour to make the differentiation between males and females. Two different databases are used to show that the proposed feature is independent of text, spoken language, dialect region, recording system, and environment. The obtained results for clean and noisy speech are 98.27% and 96.55%, respectively

    Multi-slope path loss model-based performance assessment of heterogeneous cellular network in 5G

    Get PDF
    The coverage and capacity required for fifth generation (5G) and beyond can be achieved using heterogeneous wireless networks. This exploration set up a limited number of user equipment (UEs) while taking into account the three-dimensional (3D) distance between UEs and base stations (BSs), multi-slope line of sight (LOS) and non-line of sight (n-LOS), idle mode capability (IMC), and third generation partnership projects (3GPP) path loss (PL) models. In the current work, we examine the relationship between the height and gain of the macro (M) and pico (P) base stations (BSs) antennas and the ratio of the density of the MBSs to the PBSs, indicated by the symbol β\beta . Recent research demonstrates that the antenna height of PBSs should be kept to a minimum to get the best performance in terms of coverage and capacity for a 5G wireless network, whereas ASE smashes as β\beta crosses a specific value in 5G. We aim to address these issues and increased the performance of the 5G network by installing directional antennas at MBSs and omnidirectional antennas at Pico BSs while taking into consideration traditional antenna heights. The authors of this work used the multi-tier 3GPP PL model to take into account real-world scenarios and calculated SINR using average power. This study demonstrates that, when the multi-slope 3GPP PL model is used and directional antennas are installed at MBSs, coverage can be improved 10% and area spectral efficiency (ASE) can be improved 2.5 times over the course of the previous analysis. Similarly to this, the issue of an ASE crash after a base station density of 1000 has been resolved in this study. © 2013 IEEE

    An effective solution to the optimal power flow problem using meta-heuristic algorithms

    Get PDF
    Financial loss in power systems is an emerging problem that needs to be resolved. To tackle the mentioned problem, energy generated from various generation sources in the power network needs proper scheduling. In order to determine the best settings for the control variables, this study formulates and solves an optimal power flow (OPF) problem. In the proposed work, the bird swarm algorithm (BSA), JAYA, and a hybrid of both algorithms, termed as HJBSA, are used for obtaining the settings of optimum variables. We perform simulations by considering the constraints of voltage stability and line capacity, and generated reactive and active power. In addition, the used algorithms solve the problem of OPF and minimize carbon emission generated from thermal systems, fuel cost, voltage deviations, and losses in generation of active power. The suggested approach is evaluated by putting it into use on two separate IEEE testing systems, one with 30 buses and the other with 57 buses. The simulation results show that for the 30-bus system, the minimization in cost by HJBSA, JAYA, and BSA is 860.54 /h,862.31,/h, 862.31, /h and 900.01 /h,respectively,whileforthe57bussystem,itis5506.9/h, respectively, while for the 57-bus system, it is 5506.9 /h, 6237.4, /hand7245.6/h and 7245.6 /h for HJBSA, JAYA, and BSA, respectively. Similarly, for the 30-bus system, the power loss by HJBSA, JAYA, and BSA is 9.542 MW, 10.102 MW, and 11.427 MW, respectively, while for the 57-bus system, the value of power loss is 13.473 MW, 20.552, MW and 18.638 MW for HJBSA, JAYA, and BSA, respectively. Moreover, HJBSA, JAYA, and BSA cause reduction in carbon emissions by 4.394 ton/h, 4.524, ton/h and 4.401 ton/h, respectively, with the 30-bus system. With the 57-bus system, HJBSA, JAYA, and BSA cause reduction in carbon emissions by 26.429 ton/h, 27.014, ton/h and 28.568 ton/h, respectively. The results show the outperformance of HJBSA

    Deep learning-based meta-learner strategy for electricity theft detection

    Get PDF
    Electricity theft damages power grid infrastructure and is also responsible for huge revenue losses for electric utilities. Integrating smart meters in traditional power grids enables real-time monitoring and collection of consumers’ electricity consumption (EC) data. Based on the collected data, it is possible to identify the normal and malicious behavior of consumers by analyzing the data using machine learning (ML) and deep learning methods. This paper proposes a deep learning-based meta-learner model to distinguish between normal and malicious patterns in EC data. The proposed model consists of two stages. In Fold-0, the ML classifiers extract diverse knowledge and learns based on EC data. In Fold-1, a multilayer perceptron is used as a meta-learner, which takes the prediction results of Fold-0 classifiers as input, automatically learns non-linear relationships among them, and extracts hidden complicated features to classify normal and malicious behaviors. Therefore, the proposed model controls the overfitting problem and achieves high accuracy. Moreover, extensive experiments are conducted to compare its performance with boosting, bagging, standalone conventional ML classifiers, and baseline models published in top-tier outlets. The proposed model is evaluated using a real EC dataset, which is provided by the Energy Informatics Group in Pakistan. The model achieves 0.910 ROC-AUC and 0.988 PR-AUC values on the test dataset, which are higher than those of the compared models

    An Effective Bio-Signal-Based Driver Behavior Monitoring System Using a Generalized Deep Learning Approach

    Get PDF
    Recent years have seen increasing utilization of deep learning methods to analyze large collections of medical data and signals effectively in the Internet of Medical Things (IoMT) environment. Application of these methods to medical signals and images can help caregivers form proper decision-making. One of the important IoMT medical application areas includes aggressive driving behaviors to mitigate road incidents and crashes. Various IoMT-enabled body sensors or camera sensors can be utilized for real-time monitoring and detection of drivers' bio-signal status such as heart rate, blood pressure, and drivers' behaviors. However, it requires a lightweight detection module and a powerful training module with real-time storing and analysis of drivers' behaviors data from these medical devices to detect driving behaviors and provides instant feedback by the administrator for safety, gas emissions, and energy/fuel consumption. Therefore, in this paper, we propose a bio-signal-based system for real-time detection of aggressive driving behaviors using a deep convolutional neural network (DCNN) model with edge and cloud technologies. More precisely, the system consists of three modules, which are the driving behaviors detection module implemented on edge devices in the vehicle, the training module implemented in the cloud platform, and the analyzing module placed in the monitoring environment connected with a telecommunication network. The DCNN model of the proposed system is evaluated using a holdout test set of 30% on two different processed bio-signal datasets. These two processed bio-signal datasets are generated from our collected bio-signal dataset by using two different time windows and two different time steps. The experimental results show that the proposed DCNN model achieves 73.02% of validation accuracy on the processed dataset 1 and 79.15% of validation accuracy on the processed dataset 2. The results confirm the appropriateness and applicability of the proposed deep learning model for detecting driving aggressive behaviors using bio-signal data

    A sustainable approach for demand side management considering demand response and renewable energy in smart grids

    Get PDF
    The development of smart grids has revolutionized modern energy markets, enabling users to participate in demand response (DR) programs and maintain a balance between power generation and demand. However, users’ decreased awareness poses a challenge in responding to signals from DR programs. To address this issue, energy management controllers (EMCs) have emerged as automated solutions for energy management problems using DR signals. This study introduces a novel hybrid algorithm called the hybrid genetic bacteria foraging optimization algorithm (HGBFOA), which combines the desirable features of the genetic algorithm (GA) and bacteria foraging optimization algorithm (BFOA) in its design and implementation. The proposed HGBFOA-based EMC effectively solves energy management problems for four categories of residential loads: time elastic, power elastic, critical, and hybrid. By leveraging the characteristics of GA and BFOA, the HGBFOA algorithm achieves an efficient appliance scheduling mechanism, reduced energy consumption, minimized peak-to-average ratio (PAR), cost optimization, and improved user comfort level. To evaluate the performance of HGBFOA, comparisons were made with other well-known algorithms, including the particle swarm optimization algorithm (PSO), GA, BFOA, and hybrid genetic particle optimization algorithm (HGPO). The results demonstrate that the HGBFOA algorithm outperforms existing algorithms in terms of scheduling, energy consumption, power costs, PAR, and user comfort

    Watermarking of Parkinson Disease Speech in Cloud-Based Healthcare Framework

    No full text
    Mobile healthcare in a cloud-based system increases the easiness and the ubiquitous nature of patient-doctor relationship. One of the major issues of this healthcare is secure transmission and data authenticity. If the data is not transmitted securely or not authenticated, the clients may face embarrassment. In this paper, we propose a cloud-based healthcare framework that will authenticate speech data from a patient suspected to have Parkinson's disease. The patient sends his or her speech signal recorded via a smart phone through Internet to the cloud. A discrete wavelet transform- (DWT-) singular value decomposition (SVD) based speech watermarking module is run in the cloud to embed watermark to the signal. In case of authentication, watermark is extracted from the questioned signal and matched with the stored watermark. Experimental results indicate that the proposed DWT-SVD based watermarking system achieves imperceptibility and is robust against attacks such as additive white Gaussian noise and filtering

    Modeling Learners’ Readiness to Adopt Mobile Learning: A Perspective from a GCC Higher Education Institution

    No full text
    Mobile learning (M-learning) has gained significant popularity in recent past due to the explosion of portable devices and the availability of the Internet. The use of this specific technology in learning and training has enriched the success stories of next generation mobile information systems. While M-learning is being widely used in developed countries such as the USA, South Korea, Japan, UK, Singapore, Taiwan, and European Union, most of the Gulf Cooperation Council (GCC) countries are lagging behind and facing diversified challenges in adopting M-learning. Thus, investigating learners’ readiness to adopt M-learning in higher education institution in the context of GCC is the focus of this paper. To this end, we introduce a hypothesized model to investigate learners’ readiness to adopt M-learning. The empirical study is conducted by analyzing data collected from participants from a GCC university using a survey questionnaire with the help of statistical tools. The results of the study will be valuable for policy-makers in designing comprehensive M-learning systems in the context of GCC. The implication of the study results on the next generation mobile information system is also discussed with future research directions
    corecore