1,120 research outputs found
Effects of vortex flaps on the low-speed aerodynamic characteristics of an arrow wing
Tests were conducted in the Langley 12-foot low-speed wind-tunnel to determine the longitudinal and lateral-directional aerodynamic effects of plain and tabbed vortex flaps on a flat-plate, highly swept arrow-wing model. Flow-visualization studies were made using a helium-bubble technique. Static forces and moments were measured over an angle-of-attack range from 0 deg to 50deg for sideslip angles of 0 deg and + or - 4 deg
Wind-tunnel free-flight investigation of a model of a forward-swept-wing fighter configuration
A wind-tunnel free-flight investigation was conducted to study the dynamic stability characteristics of a model of a forward-swept-wing fighter-airplane configuration at high angles of attack. Various other wind-tunnel techniques employed in the study included static- and dynamic- (forced-oscillation) force tests, free-to-roll tests, and flow-visualization tests. A unique facet of the study was the extreme level of static pitch instability (in excess of negative 32-percent static margin) inherent in the airframe design which precluded free-flight testing without stability augmentation in pitch. Results are presented which emphasize the high-angle-of-attack aerodynamics and the vehicle-component contributions to these characteristics. The effects of these aerodynamic characteristics on the high-angle-of-attack flying qualities of the configuration are discussed in terms of results of the wind-tunnel free-flight tests
Wind-tunnel investigation of a full-scale general aviation airplane equipped with an advanced natural laminar flow wing
An investigation was conducted in the Langley 30- by 60-Foot Wind Tunnel to evaluate the performance, stability, and control characteristics of a full-scale general aviation airplane equipped with an advanced laminar flow wing. The study focused on the effects of natural laminar flow and advanced boundary layer transition on performance, stability, and control, and also on the effects of several wing leading edge modifications on the stall/departure resistance of the configuration. Data were measured over an angle-of-attack range from -6 to 40 deg and an angle-of-sideslip range from -6 to 20 deg. The Reynolds number was varied from 1.4 to 2.4 x 10 to the 6th power based on the mean aerodynamic chord. Additional measurements were made using hot-film and sublimating chemical techniques to determine the condition of the wing boundary layer, and wool tufts were used to study the wing stall characteristics. The investigation showed that large regions of natural laminar flow existed on the wing which would significantly enhance cruise performance. Also, because of the characteristics of the airfoil section, artificially tripping the wing boundary layer to a turbulent condition did not significantly effect the lift, stability, and control characteristics. The addition of a leading-edge droop arrangement was found to increase the stall angle of attack at the wingtips and, therefore, was considered to be effective in improving the stall/departure resistance of the configuration. Also the addition of the droop arrangement resulted in only minor increases in drag
Wind tunnel results of the low-speed NLF(1)-0414F airfoil
The large performance gains predicted for the Natural Laminar Flow (NLF)(1)-0414F airfoil were demonstrated in two-dimensional airfoil tests and in wind tunnel tests conducted with a full scale modified Cessna 210. The performance gains result from maintaining extensive areas of natural laminar flow, and were verified by flight tests conducted with the modified Cessna. The lift, stability, and control characteristics of the Cessna were found to be essentially unchanged when boundary layer transition was fixed near the wing leading edge. These characteristics are very desirable from a safety and certification view where premature boundary layer transition (due to insect contamination, etc.) must be considered. The leading edge modifications were found to enhance the roll damping of the Cessna at the stall, and were therefore considered effective in improving the stall/departure resistance. Also, the modifications were found to be responsible for only minor performance penalties
Autonomous Aerobraking: A Design, Development, and Feasibility Study
Aerobraking has been used four times to decrease the apoapsis of a spacecraft in a captured orbit around a planetary body with a significant atmosphere utilizing atmospheric drag to decelerate the spacecraft. While aerobraking requires minimum fuel, the long time required for aerobraking requires both a large operations staff, and large Deep Space Network resources. A study to automate aerobraking has been sponsored by the NASA Engineering and Safety Center to determine initial feasibility of equipping a spacecraft with the onboard capability for autonomous aerobraking, thus saving millions of dollars incurred by a large aerobraking operations workforce and continuous DSN coverage. This paper describes the need for autonomous aerobraking, the development of the Autonomous Aerobraking Development Software that includes an ephemeris estimator, an atmospheric density estimator, and maneuver calculation, and the plan forward for continuation of this study
Rehabilitation of a patient with mini-implants after avulsion of the upper incisors: A 13-year follow up
Treatment following avulsion of a tooth in the growing patient requires a complex multidisciplinary therapeutic approach for the clinical team. The literature offers different therapeutic solutions following the avulsion of one or more teeth, but unfortunately all of them have negative repercussions on the patients' life quality, they involve long treatment plans, they are not always feasible, and they have limits. Alternatively, a new treatment concept that uses mini-implants can be considered and is presented with its rationale, clinical steps and 13 years of follow up of one case
Traumatic Dental Injuries: Clinical Case Presentation and a 10-Year Epidemiological Investigation in an Italian Dental Emergency Service
Traumatic dental injuries (TDIs) are very common in the world population, and international literature reports several studies which helped in the definition of international guidelines. The aim of this study is to present two clinical cases of TDI and to investigate epidemiological and etiological aspects of TDIs in patients treated in Modena, Italy, between January 2010 and December 2020. The presented case reports are two explicative clinical cases of successful TDI management with a long-Term follow-up. The epidemiological analysis was performed on patients who visited the Dental Emergency Service of the Dentistry and Oral-Maxillo-Facial Surgery Unit of Modena (Italy) over a period of 10 years. Data relating to age, gender, type of trauma, and place of accident were collected. Five-hundred-sixty-five TDIs that occurred to patients from 1 to 68 years old were reported, with a total of 860 injured teeth. The peak age at which TDIs are most represented varies between 2 and 3 years old, and they occurred frequently from 1 up to 7 years old. 57.5% were male, while 42.5% were female. The most common trauma resulted to be the uncomplicated crown fracture (20%), immediately followed by lateral luxation (19%), intrusive luxation (18%), avulsion (17%), and complicated crown fracture (15%). TDIs occurred at home in 44% of cases. The need for more prevention training must be highlighted, due to the fact that many TDIs occur at home and in a preschool age
Electrical transport properties of microcrystalline silicon grown by PECVD
The dark conductivity and Hall mobility of hydrogenated silicon films deposited varying the silane concentration f=SiH4/(SiH4+H2) in a conventional plasma enhanced chemical vapor deposition system have been investigated as a function of temperature, taking into account their structural properties. The electrical properties have been studied in terms of a structural two-phase model. A clear transition from the electrical transport governed by a crystalline phase, in the range 1%3%, has been evidenced. Some metastable effects of the dark conductivity have been noticed
Dysfunction of the magnocellular stream in Alzheimer's disease evaluated by pattern electroretinograms and visual evoked potentials
Background: Visuo-spatial disturbances could represent a clinical feature of early stage Alzheimer's disease (AD). The magnocellular (M) pathway has anatomo-physiological characteristic which make it more suitable for detecting form, motion and depth compared with parvocellular one (P). Objective: Aim of our study was to evaluate specific visual subsystem involvement in a group of AD patients, recording isoluminant chromatic and luminance pattern electroretinograms and pattern visual evoked potentials. Material and methods: data were obtained from 15 AD patients (9 females and 6 males, mean age \ub1 1SD: 77.6 \ub1 4.01 years) not yet undergoing any treatment, and from 10 age-matched healthy controls. Diagnosis of probable AD was clinically and neuroradiologically established. PERGs were recorded monocularly in response to equiluminant red-green (R-G), blue-yellow (B-Y) and luminance yellow-black (Y-Bk) horizontal square gratings of 0.3. c/deg and 90% contrast, reversed at 1. Hz. VEPs were recorded in response to full-field (14 deg) equiluminant chromatic R-G, B-Y and luminance Y-Bk sinusoidal gratings of 2. c/deg, presented in onset (300. ms)-offset (700. ms) mode, at the contrast levels of 90%. Results: All data were retrieved in terms of peak-amplitude and latency and assessed using the Student's t-test for paired data. Temporal differences of PERGs and VEPs, evoked by Y-Bk grating in AD patients compared with controls, suggest a specific impairment of the magnocellular stream. Conclusions: Our study support the hypothesis that the impairment of the PERGs and VEPs arising from the magnocellular streams of visual processing may indicate a primary dysfunction of the M-pathways in AD
- …