5 research outputs found

    Structural refinement and electrochemical properties of one dimensional (ZnO NRs)1-x(CNs )x functional hybrids for serotonin sensing studies

    Get PDF
    Herein, the efficient serotonin (5-HT) sensing studies have been conducted using the (ZnO NRs) 1−x(CNs) x nanocomposites (NCs) having appropriate structural and electrochemical properties. Initially, the different compositions of ZnO nanorods (NRs), with varying content of carbon nanostructures (CNs=MWCNTs and RGO), are prepared using simple in-situ wet chemical method and thereafter these NCs have been characterized for physico-chemical properties in correlation to the 5-HT sensing activity. XRD Rietveld refinement studies reveal the hexagonal Wurtzite ZnO NRs oriented in (101) direction with space group ‘P6 3mc’ and both orientation as well as phase of ZnO NRs are also retained in the NCs due to the small content of CNs. The interconnectivity between the ZnO NRs with CNs through different functional moieties is also studied using FTIR analysis; while phases of the constituents are confirmed through Raman analysis. FESEM images of the bare/NCs show hexagonal shaped rods with higher aspect ratio (4.87) to that of others. BET analysis and EIS measurements reveal the higher surface area (97.895 m 2/g), lower charge transfer resistance (16.2 kΩ) for the ZCNT 0.1 NCs to that of other NCs or bare material. Thereafter, the prepared NCs are deposited on the screen printed carbon electrode (SPCE) using chitosan as cross-linked agent for 5-HT sensing studies; conducted through cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements. Among the various composites, ZCNT0.1 NCs based electrodes exhibit higher sensing activity towards 5-HT in accordance to its higher surface area, lower particle size and lower charge transfer resistance. SWV measurements provide a wide linear response range (7.5–300 μM); lower limit of detection (0.66 μM), excellent limit of quantification (2.19 μM) and good reproducibility to ZCNT 0.1 NCs as compared to others for 5-HT sensing studies

    Synthesis of Ni2+ ion doped ZnO-MWCNTs nanocomposites using an in situ sol-gel method : an ultra sensitive non-enzymatic uric acid sensing electrode material

    Get PDF
    Nickel (Ni2+) ion doped zinc oxide-multi-wall carbon nanotubes (NZC) with different composition ratios of MWCNTs (from 0.01 to 0.1 wt%) are synthesized through anin situsol-gel method. The synthesized NZC nanocomposites (NCs) are used as electrode materials with glassy carbon electrodes (GCEs) for electrochemical detection of uric acid (UA). The cyclic voltammogram of the representative NZC 0.1 modified GCE (NZC 0.1/GCE) revealed the highest electrochemical sensing activity towards the oxidation of UA at 0.37 V in 0.2 M phosphate buffer solution (PBS) having pH 7.4 ± 0.02. The limit of detection (LOD) and limit of quantification (LOQ) for the NZC 0.1/GCE are determined to be 5.72 nM and 19.00 nM (S/N = 3) respectively, which is the lowest compared to the literature values reported for enzymatic and non-enzymatic detection techniques. The synergistic effect of NZC 0.1 NCs is proposed as one of the factors for the enhanced electrochemical oxidation of UA complemented by the phase, lattice parameters, functional groups, morphology, elemental compositions, types of bonding and specific surface area with pore size ascertained using various techniques. The synthesized NZC 0.1 NCs are further proposed as selective electrode materials for the electrochemical detection of UA as authenticated further by performing interference tests with other metabolites such as ascorbic acid (AA), dopamine (DA) andd-glucose. The optimized electrochemical studies are further adopted for sensing of UA from human excretion samples using NZC 0.1 NCs

    Bipolar Resistive Switching Characteristics of Ex-situ Synthesized TiO2-ZnO Nanocomposite

    Get PDF
    In this present article, we have reported a simple and cost-effective ex-situ synthesis of TiO2-ZnO (TZ) nanocomposite thin film by utilizing sol-gel, hydrothermal and solid-state reaction methods. The Ag/TZ/FTO nanocomposite device was developed and demonstrated the bipolar resistive switching (RS) characteristics for resistive memory applications. The result of XRD analysis confirms that the nanocomposite has mixed tetragonal and hexagonal crystal structures of TiO2 and ZnO, respectively. The hysteresis loop is an essential criterion for recognizing memristive devices and similar characteristic was noticed for the developed nanocomposite device. Besides, basic memristive properties were calculated from the I-V data. The charge transportation of Ag/TZ/FTO nanocomposite device takes place because of Ohmic and space charge limited current. The collective effect of oxygen vacancies and Ag ions was a basis of RS effect in the Ag/TZ/FTO nanocomposite device

    Spike-time dependent plasticity of tailored ZnO nanorod-based resistive memory for synaptic learning

    No full text
    Metal oxide resistive memory is a potential device that can substantially influence the current roadmap for nonvolatile memory and neuromorphic computing. However, common amorphous oxide-based resistive random-access memory suffers from high forming voltages that complicate circuit design and abrupt SET behavior incompatible with analog weight updates. To overcome such limitations, wurtzite ZnO nanorods were synthesized on a fluorine-doped tin oxide (FTO) substrate and a bipolar resistive memory with the Ag/w-ZnO/FTO stacking sequence was fabricated. The hexagonal NR morphology of w-ZnO with controlled vertical growth and nanochannel formation between the NRs were produced by in situ crystalline growth. This morphology enabled a forming-free switching and an analog switching effect that emulated neuromorphic functionalities such as potentiation–depression and complex spike-time dependent plasticity-based Hebbian learning rules. Importantly, the device exhibited nonabrupt switching behavior suitable for analog weight updates in neuromorphic computing in contrast to conventional resistive memory
    corecore