46 research outputs found

    Optimization of the extraction process parameter for kenaf seeds oil to obtain high oil yield

    Get PDF
    Kenaf (Hibiscus cannabinus) from the family of Malvaceae is a valuable fibre plant native to India and Africa. Kenaf is composed of various active components including tannins, polyphenolics, alkaloids, essential oils and steroids. In this study, kenaf seeds variety Khon kaen was used as a material in finding the optimum parameter in extracting seed oil that give the highest oil yield. Seeds were extracted using Soxhlet (control) and Supercritical Fluid Extractor (SFE). Extraction was performed at different temperature (40 to 80°C) and pressure (200 to 600 bars), respectively. Among these two parameters, temperature at 60°C shows the highest impact on the oil yield while the pressure at 600 bar is still not enough to obtain high oil yield

    Optimization of the extraction process parameter to obtain highest anti-cancer activity from kenaf seeds

    Get PDF
    Kenaf (Hibiscus cannabinus) is composed of various active components including tannins, polyphenolics, alkaloids, essential oils and steroids. In this study, kenaf seeds oil was used as a material in observing the anticancer activity on MCF-7 cancer cell line and finding the optimum parameter to extract the oil that give the highest anticancer activity. Kenaf variety Khon kaen seeds were extracted using Supercritical Fluid Extractor (SFE). The extraction was done at the different level of temperature and pressure which range from 40 to 80°C and 200 to 600 bars respectively. Among these two parameters, temperature shows the highest impact on the percentage viability ofMCF-7 breast cancer cell line. All the oils were cytotoxic towards MCF-7 breast cancer cell line in dose dependent manner as detected using the SRB assay. Kenaf seeds oil extracted from SFE at temperature of 40°C and pressure of 400 bars was the most cytotoxic towards MCF-7 breast cancer cell line with the IC50 value of 321.43 ug/ml

    The evaluation on anticancer properties from kenaf seeds oil from different varieties

    Get PDF
    Kenaf (Hibiscus cannabinus) from the family of Malvaceae is a valuable fibre plant native to India and Africa. Kenaf is composed of various active components including tannins, polyphenolics, alkaloids, essential oils and steroids. In this study, kenaf seeds oil was used as a material in observing the anticancer activity on MCF-7 cancer cells line and finding the optimum parameter to extract the oil that give the highest anticancer activity. Three varieties of kenaf seeds were utilized and their seeds were screened for their anticancer properties. Khon kaen shows the highest anticancer activity with the ICso value of 229.17 ~g/mL

    Bromelain enhances the anti-tumor effects of cisplatin on 4T1 breast tumor model in vivo

    Get PDF
    Background: This study aimed to evaluate the antitumor enhancing effect of bromelain consumption on 4T1-challenged mice treated with cisplatin. Methods: Mice challenged with 4T1 triple-negative breast cancer cells received water, bromelain, cisplatin, or bromelain + cisplatin treatment for 28 days. Tumor size was measured, and lung metastasis was evaluated by clonogenic assay. Expression of tumor inflammatory genes of the harvested tumor was quantified by polymerase chain reaction array and ELISA (enzyme-linked immunosorbent assay). Results: All treatments significantly reduced the size of tumor and lung metastasis, with combination treatment showing the best effect. Also, bromelain alone and combination treatment showed downregulation of the expression of tumor inflammatory genes (Gremlin [GREM1], interleukin 1β [IL-1β], interleukin-4 [IL-4], nuclear factor κB subunit 1 [NFκB1], and prostaglandin-endoperoxide synthase 2 [PTGS2]), tumor nitric oxide level, and serum IL-1β, and IL-4 levels. On the other hand, cisplatin treatment increased the expression of selected inflammatory markers. Conclusion: This study suggests that bromelain treatment could potentiate the antitumor effect of cisplatin on triple-negative breast cancer 4T1 cells through modulating the tumor environmental inflammation

    The prevalence risk of anxiety and its associated factors among university students in Malaysia: a national cross sectional study

    Get PDF
    Background: Anxiety disorder is one of the most common mental health problems worldwide, including Malaysia, and this issue has gained concern and attention from many, including experts and authorities globally. While average levels of stress and worry may help to motivate students to perform well in their studies, excessive feelings will increase their level of anxiety. Methods: A cross-sectional study was conducted at selected government and private universities throughout Malaysia. A total of 1851 students participated in this study. The students were asked to complete self-administered questionnaires, including socio-demographic, academic, and psychosocial characteristics. The Generalized Anxiety Disorder-7 (GAD-7) questionnaire was used to measure the prevalence risk of anxiety among the students. Chisquare analysis was conducted to find the relationship between the variables and anxiety, and multivariate logistic regression analysis was used to identify the predictors. Results: The response rate was 97.90%, where 1821 out of 1860 students participated in the study. The prevalence risk of anxiety in this study was recorded at 29%. The data revealed that academic year, financial support for the study, alcohol consumption, poor sleep quality, body mass index (BMI), having a good friend in the university, having doubt regarding the future, actively involved in the society, and having problems with other students and lecturer(s) were significantly associated with risk of anxiety; with the academic year as the primary predictor. Conclusions: The findings highlight the current prevalence risk of anxiety among university students in Malaysia. The outcome of this study can serve as the evident baseline data and help with the development of specific interventions in addressing and managing the issue appropriately

    In vitro antioxidant and in vivo hepatoprotective effect on ethanol-mediated liver damage of spray dried Vernonia amygdalina water extract

    Get PDF
    Vernonia amygdalina is a strong natural antioxidant that possessed various medicinal properties. In this study, the spray-dried water extract of V. amygdalina was evaluated for its in vitro antioxidant capacity and in vivo hepatoprotective effect against alcoholic-mediated liver damage. Total phenolic and flavonoid content of spray-dried V. amygdalina water extract were determined. Liver enzyme profiles, liver antioxidant level and nitric oxide level were evaluated in alcohol-induced liver injured mice or co-supplement with spray-dried V. amydalina. Water extract of spraydried V. amygalina that contained phenolic content of 24.8±1.5 mg/g gallic acid equivalent and total flavonoid content of 25.7±1.3 mg/g catechin equivalent was able to inhibit 50% of xanthine and tyrosinase oxidation at 170 µg/mL and 2 mg/mL, respectively. On the other hand, extracts at both 10 and 50 mg/kg body weight were able to reduce the levels of Alanine transaminase (ALT), Alkaline phosphatase (ALP), Aspartate transaminase (AST), triglyceride and total bilirubin content inthe alcohol-mediated liver injury in mice. Furthermore, it also helped to increase levels of Superoxide dismutase (SOD), Ferric reducing ability of plasma (FRAP) and reduce the levels of Nitric oxide (NO) and Malondialdehyde (MDA) in the liver of the treated mice. These resultssuggestedthat water extract of spray-dried V. amygdalina exhibited liver protective effect, which could be contributed by its antioxidant properties

    In vitro and in vivo anti-tumour effects of coconut water vinegar on 4T1 breast cancer cells

    Get PDF
    Background: Coconut water and vinegars have been reported to possess potential anti-tumour and immunostimulatory effects. However, the anti-tumour, anti-inflammatory and immunostimulatory effects of coconut water vinegar have yet to be tested. Objective: This study investigated the in vitro and in vivo anti-tumour effects of coconut water vinegar on 4T1 breast cancer cells. Methods: The 4T1 cells were treated with freeze-dried coconut water vinegar and subjected to MTT cell viability, BrdU, annexin V/PI apoptosis, cell cycle and wound healing assays for the in vitro analysis. For the in vivo chemopreventive evaluation, mice challenged with 4T1 cells were treated with 0.08or 2.00 mL/kg body weight of fresh coconut water vinegar for 28 days. Tumour weight, apoptosis of tumour cells, metastasis and immunity of untreated mice and coconut water vinegar-treated 4T1 challenged mice were compared. Results Freeze-dried coconut water vinegar reduced the cell viability, induced apoptosis and delayed the wound healing effect of 4T1 cells in vitro. In vivo, coconut water vinegar delayed 4T1 breast cancer progression in mice by inducing apoptosis and delaying the metastasis. Furthermore, coconut water vinegar also promoted immune cell cytotoxicity and production of anticancer cytokines. The results indicate that coconut water vinegar delays breast cancer progression by inducing apoptosis in breast cancer cells, suppressing metastasis and activating anti-tumour immunity. Conclusion: Coconut water vinegar is a potential health food ingredient with a chemopreventive effect

    Chemical composition of hexane-extracted plectranthus amboinicus leaf essential oil: Maximizing contents on harvested plant materials

    Get PDF
    Plectranthus amboinicus (Lour.) Spreng, also known locally as “Bangun-bangun”, is an aromatic medicinal herb known for its therapeutic and nutritional properties attributed to its terpenoid-rich phytochemicals. Information to assist in initiating appropriate harvesting time to maximize the yield of targeted chemicals in harvested plant tissues remains an issue that is seldom highlighted. This study reports on the essential oil distribution in P. amboinicus leaves, and total phenolic and flavonoid contents, in addition to GC-MS analysis of hexane extracts of the leaf samples collected at various times throughout the day. The influence of environmental factors on γ-terpinene, p-cymene, carvacrol, and thymoquinone are also discussed. Oil Red O staining showed the highest oil deposition at 2 p.m., which was consistent with the phenolic and flavonoid contents of this plant. GC-MS analysis of the leaf extract showed carvacrol (47.00–60.00%), γ-terpinene (8.00–10.00%), caryophyllene (~6.00%), p-cymene (4.90–6.50%), trans-α-bergamotene (4.70–5.00%), and thymoquinone (3.30–5.60%) were the major components of this plant. Interestingly, thymoquinone, a phytochemical associated with Nigella sativa, was also detected in this hexane-extracted sample with maximum accumulation during midday and a decrease at night, which could be due to the lower temperature and dimmer light conditions. The chemical polymorphism in the oil content indicated that environmental factors such as light exposure and temperature should be considered during harvesting to ensure consistent quality of the phytochemicals extracted from the plant materials. This study indicates that oversight in selecting plant materials might compromise the yield of quality phytochemicals extracted from harvested tissues

    Comparison of in vivo toxicity, antioxidant and immunomodulatory activities of coconut, nipah and pineapple juice vinegars

    Get PDF
    Background: Vinegar is widely used as a food additive, in food preparation and as a food supplement. This study compared the phenolic acid profiles and in vivo toxicities, and antioxidant and immunomodulatory effects of coconut, nipah and pineapple juice vinegars, which were respectively prepared via a two-step fermentation using Saccharomyces cerevisiae 7013 INRA and Acetobacter aceti vat Europeans. Results: Pineapple juice vinegar, which had the highest total phenolic acid content, also exhibited the greatest in vitro antioxidant capacity compared to coconut juice and nipah juice vinegars. Following acute and sub-chronic in vivo toxicity evaluation, no toxicity and mortality were evident and there were no significant differences in the serum biochemical profiles between mice administered the vinegars versus the control group. In the sub-chronic toxicity evaluation, the highest liver antioxidant levels were found in mice fed with pineapple juice vinegar, followed by coconut juice and nipah juice vinegars. However, compared to the pineapple juice and nipah juice vinegars, the mice fed with coconut juice vinegar, exhibited a higher population of CD4+ and CD8+ T-lymphocytes in the spleen, which was associated with greater levels of serum interleukin-2 and interferon-γ cytokines. Conclusions: Overall, the data suggested that not all vinegar samples cause acute and sub-chronic toxicity in vivo. Moreover, the in vivo immunity and organ antioxidant levels were enhanced, to varying extents, by the phenolic acids present in the vinegars. The results obtained in this study provide appropriate guidelines for further in vivo bioactivity studies and pre-clinical assessments of vinegar consumption

    Cytotoxicity and apoptosis effects of curcumin analogue (2E,6E)-2,6-Bis(2,3-Dimethoxybenzylidine) Cyclohexanone (DMCH) on human colon cancer cells HT29 and SW620 in vitro

    Get PDF
    Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012-2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells
    corecore