1,028 research outputs found
Three-dimensional fast electron transport for ignition-scale inertial fusion capsules
Three-dimensional hybrid PIC simulations are presented to study electron
energy transport and deposition in a full-scale fast ignition configuration.
Multi-prong core heating close to ignition is found when a few GA, few PW beam
is injected. Resistive beam filamentation in the corona seeds the 3D current
pattern that penetrates the core. Ohmic heating is important in the low-density
corona, while classical Coulomb deposition heats the core. Here highest energy
densities (few Tbar at 10 keV) are observed at densities above 200 g/cc. Energy
coupling to the core ranges from 20 to 30%; it is enhanced by beam collimation
and decreases when raising the beam particle energy from 1.5 to 5.5 MeV.Comment: 5 pages, 5 figure
Industrial Applications of Laser Neutron Source
The industrial applications of the intense neutron source have been widely explored because of the unique features of the neutron-matter interaction. Usually, intense neutron sources are assembled with fission reactors or high energy ion accelerators. The big size and high cost of these systems are the bottle neck to promote the industrial applications of intense neutrons. In this paper, we propose the compact laser driven neutron source for the industrial application. As the first step of our project for the versatile applications of laser driven neutron source, Li-neutron and/or Li-proton interactions have been investigated for the application to the development of Li battery
Minimal Membrane Docking Requirements Revealed by Reconstitution of Rab GTPase-Dependent Membrane Fusion from Purified Components
Rab GTPases and their effectors mediate docking, the initial contact of intracellular membranes preceding bilayer fusion. However, it has been unclear whether Rab proteins and effectors are sufficient for intermembrane interactions. We have recently reported reconstituted membrane fusion that requires yeast vacuolar SNAREs, lipids, and the homotypic fusion and vacuole protein sorting (HOPS)/class C Vps complex, an effector and guanine nucleotide exchange factor for the yeast vacuolar Rab GTPase Ypt7p. We now report reconstitution of lysis-free membrane fusion that requires purified GTP-bound Ypt7p, HOPS complex, vacuolar SNAREs, ATP hydrolysis, and the SNARE disassembly catalysts Sec17p and Sec18p. We use this reconstituted system to show that SNAREs and Sec17p/Sec18p, and Ypt7p and the HOPS complex, are required for stable intermembrane interactions and that the three vacuolar Q-SNAREs are sufficient for these interactions
Characterization of two-level system noise for microwave kinetic inductance detector comprising niobium film on silicon substrate
A microwave kinetic inductance detector (MKID) is a cutting-edge superconducting detector. It comprises a resonator circuit constructed with a superconducting film on a dielectric substrate. To expand its field of application, it is important to establish a method to suppress the two-level system (TLS) noise that is caused by the electric fluctuations between the two energy states at the surface of the substrate. The electric field density can be decreased by expanding the strip width (S) and gap width from the ground plane (W) in the MKID circuit, allowing the suppression of TLS noise. However, this effect has not yet been confirmed for MKIDs made with niobium films on silicon substrates. In this study, we demonstrate its effectiveness for such MKIDs. We expanded the dimension of the circuit from (S, W) = (3.00 μm, 4.00 μm) to (S, W) = (5.00 μm, 23.7 μm), and achieved an increased suppression of 5.5 dB in TLS noise
- …