65 research outputs found

    Blended care in the treatment of subthreshold symptoms of depression and psychosis in emerging adults:A randomised controlled trial of Acceptance and Commitment Therapy in Daily-Life (ACT-DL)

    Get PDF
    In this study, the feasibility and efficacy of Acceptance and Commitment Therapy in Daily Life (ACT-DL), ACT augmented with a daily life application, was investigated in 55 emerging adults (age 16 to 25) with subthreshold depressive and/or psychotic complaints. Participants were randomized to ACT-DL (n = 27) or to active control (n = 28), with assessments completed at pre- and post-measurement and 6- and 12-months follow-up. It took up to five (ACT-DL) and 11 (control) months to start group-based interventions. Participants attended on average 4.32 out of 5 ACT-DL sessions. On the app, they filled in on average 69 (48%) of signal-contingent beep-questionnaires, agreed to 15 (41%) of offered beep-exercises, initiated 19 on-demand exercises, and rated ACT-DL metaphors moderately useful. Relative to active control, interviewer-rated depression scores decreased significantly in ACT-DL participants (p =.027). Decreases in self-reported depression, psychotic-related distress, anxiety, and general psychopathology did not differ between conditions. ACT-DL participants reported increased mean NA (p =.011), relative to active controls. Mean PA did not change in either group, nor did psychological flexibility. ACT-DL is a feasible intervention, although adaptations in future research may improve delivery of and compliance with the intervention. There were mixed findings for its efficacy in reducing subthreshold psychopathology in emerging adults. Dutch Trial Register no.: NTR3808

    Acceptance and Commitment Therapy and white matter plasticity in individuals with subclinical depression and psychotic experiences: A Randomised Controlled Trial

    Get PDF
    Background: Research indicates that Acceptance and Commitment Therapy in Daily Life (ACT-DL) is effective in reducing symptoms of depression, anxiety and psychosis. During adolescence, vulnerability to psychopathology peaks, creating a window for early interventions, while white matter development is ongoing. This study aims to examine microstructural white matter after ACT-DL intervention in youngsters with mild psychopathology. Methods: Forty-five individuals with mild psychopathology were randomly allocated to ACT-DL (n=20) or topic discussion control (TD, n=25). Symptomatology was assessed with the Community Assessment of Psychic Experiences (CAPE), Montgomery–Åsberg Depression Rating Scale (MADRS) and the Experience Sampling Method (ESM). Diffusion Weighted Imaging (DWI) and network-connectivity parameters were obtained and compared before and after the intervention/control condition. Interactions between microstructural white matter change and condition were examined in models of CAPE positive symptoms and ESM subclinical psychotic experiences (PE) and negative affect (NA) levels. Results: ACT-DL, compared to TD, was associated with changes on subclinical depressive and psychotic symptom levels. There was no significant change in DWI or network connectivity in either condition and no significant difference between both conditions. In the model of NA, several regional interactions between condition and network measures were significant, but stratification per condition provided no significant associations. There were no significant interactions between DWI or network connectivity parameters and condition in the models of the CAPE positive symptoms, MADRS and PE. Conclusions: The findings suggest that behavioral (symptom) changes are more sensitive to a five-week psychological training than microstructural white matter changes which did not show significant changes over time

    Recommendations and guidelines from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 -- In vivo small-animal imaging

    Full text link
    The value of in vivo preclinical diffusion MRI (dMRI) is substantial. Small-animal dMRI has been used for methodological development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. Many of the influential works in this field were first performed in small animals or ex vivo samples. The steps from animal setup and monitoring, to acquisition, analysis, and interpretation are complex, with many decisions that may ultimately affect what questions can be answered using the data. This work aims to serve as a reference, presenting selected recommendations and guidelines from the diffusion community, on best practices for preclinical dMRI of in vivo animals. In each section, we also highlight areas for which no guidelines exist (and why), and where future work should focus. We first describe the value that small animal imaging adds to the field of dMRI, followed by general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in animal species and disease models and discuss how they are appropriate for different studies. We then give guidelines for in vivo acquisition protocols, including decisions on hardware, animal preparation, imaging sequences and data processing, including pre-processing, model-fitting, and tractography. Finally, we provide an online resource which lists publicly available preclinical dMRI datasets and software packages, to promote responsible and reproducible research. An overarching goal herein is to enhance the rigor and reproducibility of small animal dMRI acquisitions and analyses, and thereby advance biomedical knowledge.Comment: 69 pages, 6 figures, 1 tabl

    Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA Schizophrenia consortium

    Get PDF
    Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-related chronic disease, and premature mortality. We investigated evidence for advanced brain ageing in adult SZ patients, and whether this was associated with clinical characteristics in a prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 years; range 18-72 years; 67% male) and 2598 healthy controls (mean age 33.8 years, range 18-73 years, 55% male). Brain-predicted age was individually estimated using a model trained on independent data based on 68 measures of cortical thickness and surface area, 7 subcortical volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted brain magnetic resonance imaging (MRI) scans. Deviations from a healthy brain ageing trajectory were assessed by the difference between brain-predicted age and chronological age (brain-predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of +3.55 years (95% CI: 2.91, 4.19; I2 = 57.53%) compared to controls, after adjusting for age, sex and site (Cohen's d = 0.48). Among SZ patients, brain-PAD was not associated with specific clinical characteristics (age of onset, duration of illness, symptom severity, or antipsychotic use and dose). This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the clinical implications of increased brain-PAD and its ability to be influenced by interventions

    Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium

    Get PDF
    Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, using MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets in the ENIGMA consortium, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macro-structural asymmetry may reflect differences at the molecular, cytoarchitectonic or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia

    The Association Between Familial Risk and Brain Abnormalities Is Disease Specific: An ENIGMA-Relatives Study of Schizophrenia and Bipolar Disorder

    Get PDF
    Background: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects. Methods: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects. Results: FDRs-BD had significantly larger ICV (d = +0.16, q <.05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = −0.12, q <.05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < −0.09, q <.05 corrected); and third ventricle was larger (d = +0.15, q <.05 corrected). The findings were not explained by psychopathology in the relatives or control subjects. Conclusions: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct

    Road work ahead: cerebral pathways mediating psychological mechanisms underlying the psychosis spectrum

    Get PDF
    Research on white matter connections in the brain (the white, fatty fibres responsible for the transfer of signals) using MRI technology can improve our understanding of the mechanisms underlying psychotic disorders. It is important to examine the entire spectrum, from sub-clinical psychotic experiences to patients with diagnosed schizophrenia. This dissertation examined the link between white matter abnormalities and psychotic symptoms. The results show a disturbance in brain fibre orientation in patients and to some extent in their siblings as well. In young adults, these white matter abnormalities are not related to sub-clinical psychotic experiences

    The habenula in Parkinson's disease : anatomy, function, and implications for mood disorders - a narrative review

    No full text
    Abstract: Parkinson's disease (PD), a widespread neurodegenerative disorder, often coexists with mood disorders. Degeneration of serotonergic neurons in brainstem raphe nuclei have been linked to depression and anxiety. Additionally, the locus coeruleus and its noradrenergic neurons are among the first areas to degenerate in PD and contribute to stress, emotional memory, motor, sensory, and autonomic symptoms. Another brain region of interest is habenula, which is especially related to anti-reward processing, and its function has recently been linked to PD and to mood-related symptoms. There are several neuroimaging studies that investigated role of the habenula in mood disorders. Differences in habenular size and hemispheric symmetry were found in healthy controls compared to individuals with mood disorders. The lateral habenula, as a link between the dopaminergic and serotonergic systems, is thought to contribute to depressive symptoms in PD. However, there is only one imaging study about role of habenula in mood disorders in PD, although the relationship between PD and mood disorders is known. There is little known about habenula pathology in PD but given these observations, the question arises whether habenular dysfunction could play a role in PD and the development of PD-related mood disorders. In this review, we evaluate neuroimaging techniques and studies that investigated the habenula in the context of PD and mood disorders. Future studies are important to understand habenula's role in PD patients with mood disorders. Thus, new potential diagnostic and treatment opportunities would be found for mood disorders in PD

    The habenula in Parkinson's disease:Anatomy, function, and implications for mood disorders − A narrative review

    No full text
    Parkinson's disease (PD), a widespread neurodegenerative disorder, often coexists with mood disorders. Degeneration of serotonergic neurons in brainstem raphe nuclei have been linked to depression and anxiety. Additionally, the locus coeruleus and its noradrenergic neurons are among the first areas to degenerate in PD and contribute to stress, emotional memory, motor, sensory, and autonomic symptoms. Another brain region of interest is habenula, which is especially related to anti-reward processing, and its function has recently been linked to PD and to mood-related symptoms. There are several neuroimaging studies that investigated role of the habenula in mood disorders. Differences in habenular size and hemispheric symmetry were found in healthy controls compared to individuals with mood disorders. The lateral habenula, as a link between the dopaminergic and serotonergic systems, is thought to contribute to depressive symptoms in PD. However, there is only one imaging study about role of habenula in mood disorders in PD, although the relationship between PD and mood disorders is known. There is little known about habenula pathology in PD but given these observations, the question arises whether habenular dysfunction could play a role in PD and the development of PD-related mood disorders. In this review, we evaluate neuroimaging techniques and studies that investigated the habenula in the context of PD and mood disorders. Future studies are important to understand habenula's role in PD patients with mood disorders. Thus, new potential diagnostic and treatment opportunities would be found for mood disorders in PD

    Habenula volume change in Parkinson's disease: A 7T MRI study

    No full text
    Objective: Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by motor and early non-motor symptoms. The habenula is implicated in the pathophysiology of depression. This study investigates habenular volume in PD patients without clinical depression to show the changes in PD unrelated to depression. Methods: The study used high-resolution 7 Tesla MRI data from the TRACK-PD study involving 104 PD patients and 44 healthy controls (HCs). The habenula was manually segmented, and volumes were measured, considering demographic data and depression scores via the Beck Depression Inventory (BDI). Results: No significant correlation was found between habenular volume and BDI scores in PD patients or HCs. However, the PD group exhibited a significantly larger mean and right habenular volume than HCs. Although PD patients showed higher BDI scores, indicating more subthreshold depression, these did not correlate with the habenular volume. Conclusion: The results suggest that while the habenula may be involved in the symptoms of PD, its role in depression within this cohort is unclear. The changes might be related to the role of the habenula in motor symptoms. This study provides a new perspective on the role of the habenula in PD, but future research could lead to a greater understanding of the neuroanatomical features of the habenula in PD
    • …
    corecore