23 research outputs found

    The COMPLETE Survey of Outflows in Perseus

    Get PDF
    We present a study on the impact of molecular outflows in the Perseus molecular cloud complex using the COMPLETE survey large-scale 12CO(1-0) and 13CO(1-0) maps. We used three-dimensional isosurface models generated in RA-DEC-Velocity space to visualize the maps. This rendering of the molecular line data allowed for a rapid and efficient way to search for molecular outflows over a large (~ 16 sq. deg.) area. Our outflow-searching technique detected previously known molecular outflows as well as new candidate outflows. Most of these new outflow-related high-velocity features lie in regions that have been poorly studied before. These new outflow candidates more than double the amount of outflow mass, momentum, and kinetic energy in the Perseus cloud complex. Our results indicate that outflows have significant impact on the environment immediately surrounding localized regions of active star formation, but lack the energy needed to feed the observed turbulence in the entire Perseus complex. This implies that other energy sources, in addition to protostellar outflows, are responsible for turbulence on a global cloud scale in Perseus. We studied the impact of outflows in six regions with active star formation within Perseus of sizes in the range of 1 to 4 pc. We find that outflows have enough power to maintain the turbulence in these regions and enough momentum to disperse and unbind some mass from them. We found no correlation between outflow strength and star formation efficiency for the six different regions we studied, contrary to results of recent numerical simulations. The low fraction of gas that potentially could be ejected due to outflows suggests that additional mechanisms other than cloud dispersal by outflows are needed to explain low star formation efficiencies in clusters.Comment: Published in The Astrophysical Journa

    Evaluation of Filesystem Provenance Visualization Tools

    Get PDF
    Having effective visualizations of filesystem provenance data is valuable for understanding its complex hierarchical structure. The most common visual representation of provenance data is the node-link diagram. While effective for understanding local activity, the node-link diagram fails to offer a high-level summary of activity and inter-relationships within the data. We present a new tool, InProv, which displays filesystem provenance with an interactive radial-based tree layout. The tool also utilizes a new time-based hierarchical node grouping method for filesystem provenance data we developed to match the user’s mental model and make data exploration more intuitive. We compared InProv to a conventional node-link based tool, Orbiter, in a quantitative evaluation with real users of filesystem provenance data including provenance data experts, IT professionals, and computational scientists. We also compared in the evaluation our new node grouping method to a conventional method. The results demonstrate that InProv results in higher accuracy in identifying system activity than Orbiter with large complex data sets. The results also show that our new time- based hierarchical node grouping method improves performance in both tools, and participants found both tools significantly easier to use with the new time-based node grouping method. Subjective measures show that participants found InProv to require less mental activity, less physical activity, less work, and is less stressful to use. Our study also reveals one of the first cases of gender differences in visualization; both genders had comparable performance with InProv, but women had a significantly lower average accuracy (56%) compared to men (70%) with Orbiter.Engineering and Applied Science

    The COMPLETE Survey of Star-Forming Regions: Phase I Data

    Get PDF
    We present an overview of data available for the Ophiuchus and Perseus molecular clouds from ``Phase I'' of the COMPLETE Survey of Star-Forming Regions. This survey provides a range of data complementary to the Spitzer Legacy Program ``From Molecular Cores to Planet Forming Disks.'' Phase I includes: Extinction maps derived from 2MASS near-infrared data using the NICER algorithm; extinction and temperature maps derived from IRAS 60 and 100um emission; HI maps of atomic gas; 12CO and 13CO maps of molecular gas; and submillimetre continuum images of emission from dust in dense cores. Not unexpectedly, the morphology of the regions appears quite different depending on the column-density tracer which is used, with IRAS tracing mainly warmer dust and CO being biased by chemical, excitation and optical depth effects. Histograms of column-density distribution are presented, showing that extinction as derived from 2MASS/NICER gives the closest match to a log-normal distribution as is predicted by numerical simulations. All the data presented in this paper, and links to more detailed publications on their implications are publically available at the COMPLETE website.Comment: Accepted by AJ. Full resolution version available from: http://www.cfa.harvard.edu/COMPLETE/papers/complete_phase1.pd
    corecore