14 research outputs found

    Lipid metabolism adaptations are reduced in human compared to murine Schwann cells following injury

    No full text
    Mammals differ in their regeneration potential after traumatic injury, which might be caused by species-specific regeneration programs. Here, we compared murine and human Schwann cell (SC) response to injury and developed an ex vivo injury model employing surgery-derived human sural nerves. Transcriptomic and lipid metabolism analysis of murine SCs following injury of sural nerves revealed down-regulation of lipogenic genes and regulator of lipid metabolism, including Pparg (peroxisome proliferator-activated receptor gamma) and S1P (sphingosine-1-phosphate). Human SCs failed to induce similar adaptations following ex vivo nerve injury. Pharmacological PPARg and S1P stimulation in mice resulted in up-regulation of lipid gene expression, suggesting a role in SCs switching towards a myelinating state. Altogether, our results suggest that murine SC switching towards a repair state is accompanied by transcriptome and lipidome adaptations, which are reduced in humans

    Water-Dispersible Polydopamine-Coated Nanofibers for Stimulation of Neuronal Growth and Adhesion

    No full text
    Hybrid nanomaterials have shown great potential in regenerative medicine due to the unique opportunities to customize materials properties for effectively controlling cellular growth. The peptide nanofiber-mediated auto-oxidative polymerization of dopamine, resulting in stable aqueous dispersions of polydopamine-coated peptide hybrid nanofibers, is demonstrated. The catechol residues of the polydopamine coating on the hybrid nanofibers are accessible and provide a platform for introducing functionalities in a pH-responsive polymer analogous reaction, which is demonstrated using a boronic acid modified fluorophore. The resulting hybrid nanofibers exhibit attractive properties in their cellular interactions: they enhance neuronal cell adhesion, nerve fiber growth, and growth cone area, thus providing great potential in regenerative medicine. Furthermore, the facile modification by pH-responsive supramolecular polymer analog reactions allows tailoring the functional properties of the hybrid nanofibers in a reversible fashion

    Serum response factor (SRF) ablation interferes with acute stress-associated immediate and long-term coping mechanisms.

    No full text
    Stress experience modulates behavior, metabolism, and energy expenditure of organisms. One molecular hallmark of an acute stress response is a rapid induction of immediate early genes (IEGs) such as c-Fos and Egr family members. IEG transcription in neurons is mediated by the neuronal activity-driven gene regulator serum response factor (SRF). We show a first role of SRF in immediate and long-lasting acute restraint stress (AS) responses. For this, we employed a standardized mouse phenotyping protocol at the German Mouse Clinic (GMC) including behavioral, metabolic, and cardiologic tests as well as gene expression profiling to analyze the consequences of forebrain-specific SRF deletion in mice exposed to AS. Adult mice with an SRF deletion in glutamatergic neurons (Srf;CaMKIIa-CreERT2) showed hyperactivity, decreased anxiety, and impaired working memory. In response to restraint AS, instant stress reactivity including locomotor behavior and corticosterone induction was impaired in Srf mutant mice. Interestingly, even several weeks after previous AS exposure, SRF-deficient mice showed long-lasting AS-associated changes including altered locomotion, metabolism, energy expenditure, and cardiovascular changes. This suggests a requirement of SRF for mediating long-term stress coping mechanisms in wild-type mice. SRF ablation decreased AS-mediated IEG induction and activity of the actin severing protein cofilin. In summary, our data suggest an SRF function in immediate AS reactions and long-term post-stress-associated coping mechanisms
    corecore