29 research outputs found

    Desarrollo de tres fórmulas de embutido escaldado a base de carne de conejo y su efecto en su composición nutricional y características organolépticas

    Get PDF
    Con el objetivo de evaluar tres fórmulas de embutido escaldado mediante variaciones de 55, 50 y 45% de carne de conejo para la elaboración de una salchicha y su efecto en la percepción sensorial, se llevó a cabo una investigación en la Estación Experimental y de Prácticas, de la Facultad de Ciencias Agronómicas, Universidad de El Salvador, Cantón Tecualuya, Municipio de San Luis Talpa, Departamento de La Paz, con un período de 52 semanas el cual inició en el mes de octubre de 2018 y finalizó en el mes de octubre de 2019, donde se evaluaron tres fórmulas de embutido escaldado a base de carne de conejo y un testigo a base de carne de pollo, donde se determinó su efecto en las características organolépticas. Para determinar el grado de aceptación se realizó una prueba de evaluación sensorial, utilizando una prueba de satisfacción en cada uno de los tratamientos; la evaluación sensorial se llevó a cabo en el Centro Histórico de San Salvador (enfocada directamente al consumidor final) se desarrolló con 80 personas de entre 15 – 60 años de edad como panel de jueces, para la toma de datos se utilizó una escala hedónica de nueve puntos, el análisis de datos se realizó mediante el software Infostat, programa de análisis estadístico. Se realizó la prueba de Kruskal Wallis, que es una prueba no paramétrica que analiza medianas, determinando así diferencias significativas con la variable sabor, no así para las variables color, olor y textura las cuales no mostraron diferencias significativas de acuerdo al análisis estadístico. La investigación tuvo una base económica que determino la relación del beneficio/costo donde se analizó la factibilidad del estudio en términos económicos, para ello se realizó una estimación de los costos de producción de una libra de carne de conejo, mediante la valorización del precio de la canal de conejo en el mercado y su comparación con la de pollo. Además, cada tratamiento se analizó utilizando percentiles, para determinar cual tuvo mayor grado de aceptación según las variables. Se desarrolló un análisis bromatológico para identificar el aporte nutricional de cada uno de los tratamientos, donde se tomó una muestra significativa para determinar proteína bajo el método de Kjeldahl, determinación de grasa cruda y determinación de carbohidratos totales. Al final se compararon los resultados determinando que el tratamiento 2 presento mejores características nutricionales, de igual forma se determinó que el tratamiento 1 presenta los costos de elaboración más bajos, aunque comparándolo con los demás tratamientos esta diferencia no es significativa lo cual muestra la conclusión que el tratamiento que presenta más aceptabilidad y costos de elaboración bajos es el tratamiento 2. Nutricionalmente se concluye que la carne de conejo es la que aporta mejores beneficios a la salud del consumidor, siendo el tratamiento 2 (50% de carne de conejo) el que expresa mejores aportes nutricionales en su fórmula; por otro lado, el que presenta menor aporte nutricional es el tratamiento testigo (tratamiento 0 con 55% de carne de pollo).De acuerdo con los resultados obtenidos al analizar la variable sabor para los tratamientos, se pudo concluir que los tratamientos que contenían más carne son los que presentaron puntajes más altos (55% carne de pollo y 55% carne de conejo

    Las disputas por lo público en América Latina y el Caribe

    No full text
    Este libro configura un aporte sustancial para entender, desde un prisma distante de las concepciones hegemónicas en la academia, las dinámicas de lucha y las disputas en torno a lo público que signan la realidad contemporánea de América Latina y el Caribe. Un continente éste que, desde la perspectiva de los pueblos y clases subalternas que lo han forjado y habitan, ha sido renombrado como Abya Yala, Patria Grande o Nuestra América, todos ellos significantes que cargan una historia en común y una identidad cultivada al calor de las resistencias contra el despojo, la violencia y la explotación de un capitalismo neocolonial asentado en un entronque de patriarcados, y cuya unidad en la diversidad fue moldeada borgeanamente más a partir del espanto que del amor. Los capítulos que integran esta compilación auscultan el subsuelo de nuestras sociedades, hurgando en sus recovecos y márgenes para identificar, tornar comprensibles y potenciar aquellos procesos de creación, fortalecimiento y/o recuperación de lo público que, difícilmente, salgan en las tapas de diarios o los programas de televisión, salvo que acontezcan en ellos actos delictivos o represiones monumentales. Del Posfacio de Hernán Oubiñ

    II Simposio Internacional sobre Investigación en la enseñanza de las ciencias

    No full text

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain

    No full text

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    corecore