23,846 research outputs found
Counting Complexity for Reasoning in Abstract Argumentation
In this paper, we consider counting and projected model counting of
extensions in abstract argumentation for various semantics. When asking for
projected counts we are interested in counting the number of extensions of a
given argumentation framework while multiple extensions that are identical when
restricted to the projected arguments count as only one projected extension. We
establish classical complexity results and parameterized complexity results
when the problems are parameterized by treewidth of the undirected
argumentation graph. To obtain upper bounds for counting projected extensions,
we introduce novel algorithms that exploit small treewidth of the undirected
argumentation graph of the input instance by dynamic programming (DP). Our
algorithms run in time double or triple exponential in the treewidth depending
on the considered semantics. Finally, we take the exponential time hypothesis
(ETH) into account and establish lower bounds of bounded treewidth algorithms
for counting extensions and projected extension.Comment: Extended version of a paper published at AAAI-1
Bremsstrahlung Pair Production In Relativistic Heavy Ion Collision
We calculate production of electron- and muon-pairs by the bremsstrahlung
process in hadron collisions and compare it with the dominant two-photon
process. Results for the total cross section are given for proton-proton and
heavy-ion collisions at energies of the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC).Comment: 6 pages, Latex, 9 figures using epsf-style. Accepted for publication
in Z. Phys.
Vortices and charge order in high-T_c superconductors
We theoretically investigate the vortex state of the cuprate high-temperature
superconductors in the presence of magnetic fields. Assuming the recently
derived nonlinear -model for fluctuations in the pseudogap phase, we
find that the vortex cores consist of two crossed regions of elliptic shape, in
which a static charge order emerges. Charge density wave order manifests itself
as satellites to the ordinary Bragg peaks directed along the axes of the
reciprocal copper lattice. Quadrupole density wave (bond order) satellites, if
seen, are predicted to be along the diagonals. The intensity of the satellites
should grow linearly with the magnetic field, in agreement with the result of
recent experiments
Industrial hemp: agronomic fundamentals
Non-Peer Reviewe
Gate tunability of stray-field-induced electron spin precession in a GaAs/InGaAs quantum well below an interdigitated magnetized Fe grating
Time-resolved Faraday rotation is used to measure the coherent electron spin
precession in a GaAs/InGaAs quantum well below an interdigitated magnetized Fe
grating. We show that the electron spin precession frequency can be modified by
applying a gate voltage of opposite polarity to neighboring bars. A tunability
of the precession frequency of 0.5 GHz/V has been observed. Modulating the gate
potential with a gigahertz frequency allows the electron spin precession to be
controlled on a nanosecond timescale
- …