81 research outputs found

    Discovery of fourteen new ZZ Cetis with SOAR

    Get PDF
    We report the discovery of fourteen new ZZ Cetis with the 4.1m Southern Astrophysical Research telescope, at Cerro Pachon, in Chile. The candidates were selected from the SDSS (Sloan Digital Sky Survey) DA white dwarf stars with Teff obtained from the optical spectra fit, inside the ZZ Ceti instability strip. Considering these stars are multi-periodic pulsators and the pulsations propagate to the nucleus of the star, they carry information on the structure of the star and evolution of the progenitors. The ZZ Cetis discovered till 2003 are mainly within 100 pc from the Sun, and probe only the solar vicinity. The recently discovered ones, and those reported here, may sample a distinct population as they were selected mainly perpendicular to the galactic disk and cover a distance up to ~400pc.Comment: 12 pages, 2 figure

    Cosmology, Particle Physics and Superfluid 3He

    Full text link
    Many direct parallels connect superfluid 3He with the field theories describing the physical vacuum, gauge fields and elementary fermions. Superfluid 3^3He exhibits a variety of topological defects which can be detected with single-defect sensitivity. Modern scenarios of defect-mediated baryogenesis can be simulated by the interaction of the 3He vortices and domain walls with fermionic quasiparticles. Formation of defects in a symmetry-breaking phase transition in the early Universe, which could be responsible for large-scale structure formation and for microwave-background anisotropy, also may be modelled in the laboratory. This is supported by the recent observation of vortex formation in neutron-irradiated 3He-B where the "primordial fireball" is formed in an exothermic nuclear reaction.Comment: Invited talk at LT-21 Conference, 20 pages, 3 figures available at request, compressed ps file of the camera-ready format with 3 figures is at ftp://boojum.hut.fi/pub/publications/lowtemp/LTL-96006.ps.g

    Evolutionary and pulsational properties of white dwarf stars

    Get PDF
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Toward ensemble asteroseismology of ZZ Ceti stars with fully evolutionary models

    Get PDF
    ZZ Ceti stars form the most numerous group of degenerate variable stars. They are otherwise normal DA (H-rich atmospheres) white dwarfs that exhibit pulsations. Here, we present an asteroseismological analysis for 44 bright ZZ Ceti stars based on a new set of fully evolutionary DA white dwarf models characterized by detailed chemical profiles from the centre to the surface. One of our targets is the archetypal ZZ Ceti star G117−-B15A, for which we obtain an asteroseismological model with an effective temperature and a surface gravity in excellent agreement with the spectroscopy. The asteroseismological analysis of a set of 44 ZZ Ceti stars has the potential to characterize the global properties of the class, in particular the thicknesses of the hydrogen envelope and the stellar masses. Our results support the belief that white dwarfs in the solar neighbourhood harbor a broad range of hydrogen-layer thickness.Comment: 22 pages, 12 figures, 6 tables. Accepted for publication in MNRA

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore