4,078 research outputs found

    Experimental program for the evaluation of turbofan/turboshaft c conversion technology

    Get PDF
    A TF34 turbofan engine is being modified to produce shaft power from an output coupling on the fan disk when variable inlet guide vanes are closed to reduce fan airflow. The engine, called a convertible engine, could be used on advanced rotorcraft such as X-wing, ABC (Advanced Blade Concept), and Folding Tilt Rotor, and on V/STOL craft in which two engines are cross-coupled. The engine will be tested on an outdoor static test stand at NASA Lewis Research Center. Steady-state tests will be made to measure performance in turbofan, turboshaft, and combined power output modes. Transient tests will be made to determine the response to the engine and a new digital engine control system for several types of rapid changes in thrust and shaft loads. The paper describes the engine modifications, the test facility equipment, proposed testing techniques for several types of tests, and typical test results predicted from engine performance computer programs

    Core noise measurements on a YF-102 turbofan engine

    Get PDF
    Core noise from a YF-102 high bypass ratio turbofan engine was investigated through the use of simultaneous measurements of internal fluctuating pressures and far field noise. Acoustic waveguide probes, located in the engine at the compressor exit, in the combustor, at the turbine exit, and in the core nozzle, were employed to measure internal fluctuating pressures. Spectra showed that the internal signals were free of tones, except at high frequency where machinery noise was present. Data obtained over a wide range of engine conditions suggest that below 60% of maximum fan speed the low frequency core noise contributes significantly to the far field noise

    Tumour inflammatory infiltrate predicts survival following curative resection for node-negative colorectal cancer

    Get PDF
    <b>Background</b>: A pronounced tumour inflammatory infiltrate is known to confer a good outcome in colorectal cancer. Klintrup and colleagues reported a structured assessment of the inflammatory reaction at the invasive margin scoring low grade or high grade. The aim of the present study was to examine the prognostic value of tumour inflammatory infiltrate in node-negative colorectal cancer. <b>Methods</b>: Two hundred patients had undergone surgery for node-negative colorectal cancer between 1997 and 2004. Specimens were scored with Jass’ and Klintrup’s criteria for peritumoural infiltrate. Pathological data were taken from the reports at that time. <b>Results</b>: Low-grade inflammatory infiltrate assessed using Klintrup’s criteria was an independent prognostic factor in node-negative disease. In patients with a low-risk Petersen Index (n = 179), low-grade infiltrate carried a threefold increased risk of cancer death. Low-grade infiltrate was related to increasing T stage and an infiltrating margin. <b>Conclusion</b>: Assessment of inflammatory infiltrate using Klintrup’s criteria provides independent prognostic information on node-negative colorectal cancer. A high-grade local inflammatory response may represent effective host immune responses impeding tumour growth

    Orbital-selective metallicity in the valence-bond liquid phase of Li2 RuO3

    Get PDF
    Li2RuO3 (LRO) forms a valence bond crystal at room temperature. It undergoes a high temperature phase transition that involves structural, magnetic, and electronic changes leading to an exotic valence bond liquid state. The orbital degrees of freedom are thought to be fundamental to the evolution of LRO properties across the phase transition. We report temperature dependent broadband (100–26000cm–1) reflectance measurements on single crystals of LRO to elucidate structural and transport properties. Specifically, the phonon and electronic properties of LRO were investigated through the phase transition. We report that above the transition temperature (Tc≈500K), the optical band gap closes for electrons in the dxz/dyz orbitals, but the dxy electrons remain gapped. This behavior at high temperature can be associated with an orbital selective metallic state which to our knowledge has not been previously reported in LRO

    Mathematical modeling of gonadotropin-releasing hormone signaling.

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control of reproduction. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field.This work was funded Project Grants from MRC (93447) and the BBSRC (J014699). KTA and MV gratefully acknowledge the financial support of the EPSRC via grant EP/N014391/1 and an MRC Biomedical Informatics Fellowship (MR/K021826/1), respectively
    • …
    corecore