60 research outputs found

    Mycotoxin exposure assessments in a multi-center European validation study by 24-hour dietary recall and biological fluid sampling

    Get PDF
    The European Food Consumption Validation (EFCOVAL) project includes 600 men and women from Belgium, the Czech Republic, France, the Netherlands, and Norway, who had given serum and 24-hour urine samples, and completed 24-hour dietary recall (24-HDR) interviews. Consumption, according to 24-HDR, was matched against the European Food Safety Authority (EFSA) databases of mycotoxin contaminations, via the FoodEx1 standard classifications, producing an indirect external estimate of dietary mycotoxin exposure. Direct, internal measurements of dietary mycotoxin exposure were made in serum and urine by ultra-performance liquid chromatography coupled to tandem mass spectrometry. For the first time, mycotoxin exposures were thoroughly compared between two 24-HDRs, and two 24-hour urine samples collected during the same days covered by the 24-HDRs. These measurements were compared to a single-time point serum measurement to investigate evidence of chronic mycotoxin exposure. According to 24-HDR data, all 600 individuals were exposed to between 4 and 34 mycotoxins, whereof 10 found to exceed the tolerable daily intake. Correlations were observed between two time points, and significant correlations were observed between concentrations in serum and urine. However, only acetyldeoxynivalenol, ochratoxin A, and sterigmatocystin were found to have significant positive correlations between 24-HDR exposures and serum, while aflatoxin G1 and G2, HT-2 toxin, and deoxynivalenol were associated between concurrent 24-HDR and 24-hour urine. Substantial agreements on quantitative levels between serum and urine were observed for the groups Type B Trichothecenes and Zearalenone. Further research is required to bridge the interpretation of external and internal exposure estimates of the individual on a time scale of hours. Additionally, metabolomic profiling of dietary mycotoxin exposures could help with a comprehensive assessment of single time-point exposures, but also with the identification of chronic exposure biomarkers. Such detailed characterization informs population exposure assessments, and aids in the interpretation of epidemiological health outcomes related to multi-mycotoxin exposure

    Mycotoxin exposure assessments in a multi-center European validation study by 24-hour dietary recall and biological fluid sampling

    Get PDF
    The European Food Consumption Validation (EFCOVAL) project includes 600 men and women from Belgium, the Czech Republic, France, the Netherlands, and Norway, who had given serum and 24-hour urine samples, and completed 24-hour dietary recall (24-HDR) interviews. Consumption, according to 24-HDR, was matched against the European Food Safety Authority (EFSA) databases of mycotoxin contaminations, via the FoodEx1 standard classifications, producing an indirect external estimate of dietary mycotoxin exposure. Direct, internal measurements of dietary mycotoxin exposure were made in serum and urine by ultra-performance liquid chromatography coupled to tandem mass spectrometry. For the first time, mycotoxin exposures were thoroughly compared between two 24-HDRs, and two 24-hour urine samples collected during the same days covered by the 24-HDRs. These measurements were compared to a single-time point serum measurement to investigate evidence of chronic mycotoxin exposure. According to 24-HDR data, all 600 individuals were exposed to between 4 and 34 mycotoxins, whereof 10 found to exceed the tolerable daily intake. Correlations were observed between two time points, and significant correlations were observed between concentrations in serum and urine. However, only acetyldeoxynivalenol, ochratoxin A, and sterigmatocystin were found to have significant positive correlations between 24-HDR exposures and serum, while aflatoxin G1 and G2, HT-2 toxin, and deoxynivalenol were associated between concurrent 24-HDR and 24-hour urine. Substantial agreements on quantitative levels between serum and urine were observed for the groups Type B Trichothecenes and Zearalenone. Further research is required to bridge the interpretation of external and internal exposure estimates of the individual on a time scale of hours. Additionally, metabolomic profiling of dietary mycotoxin exposures could help with a comprehensive assessment of single time-point exposures, but also with the identification of chronic exposure biomarkers. Such detailed characterization informs population exposure assessments, and aids in the interpretation of epidemiological health outcomes related to multi-mycotoxin exposure.</p

    Impact of nonoptimal intakes of saturated, polyunsaturated, and trans fat on global burdens of coronary heart disease

    Get PDF
    Background: Saturated fat (SFA), ω‐6 (n‐6) polyunsaturated fat (PUFA), and trans fat (TFA) influence risk of coronary heart disease (CHD), but attributable CHD mortalities by country, age, sex, and time are unclear. Methods and Results: National intakes of SFA, n‐6 PUFA, and TFA were estimated using a Bayesian hierarchical model based on country‐specific dietary surveys; food availability data; and, for TFA, industry reports on fats/oils and packaged foods. Etiologic effects of dietary fats on CHD mortality were derived from meta‐analyses of prospective cohorts and CHD mortality rates from the 2010 Global Burden of Diseases study. Absolute and proportional attributable CHD mortality were computed using a comparative risk assessment framework. In 2010, nonoptimal intakes of n‐6 PUFA, SFA, and TFA were estimated to result in 711 800 (95% uncertainty interval [UI] 680 700–745 000), 250 900 (95% UI 236 900–265 800), and 537 200 (95% UI 517 600–557 000) CHD deaths per year worldwide, accounting for 10.3% (95% UI 9.9%–10.6%), 3.6%, (95% UI 3.5%–3.6%) and 7.7% (95% UI 7.6%–7.9%) of global CHD mortality. Tropical oil–consuming countries were estimated to have the highest proportional n‐6 PUFA– and SFA‐attributable CHD mortality, whereas Egypt, Pakistan, and Canada were estimated to have the highest proportional TFA‐attributable CHD mortality. From 1990 to 2010 globally, the estimated proportional CHD mortality decreased by 9% for insufficient n‐6 PUFA and by 21% for higher SFA, whereas it increased by 4% for higher TFA, with the latter driven by increases in low‐ and middle‐income countries. Conclusions: Nonoptimal intakes of n‐6 PUFA, TFA, and SFA each contribute to significant estimated CHD mortality, with important heterogeneity across countries that informs nation‐specific clinical, public health, and policy priorities.peer-reviewe

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.8–14.4 million) incident T2D cases, representing 70.3% (68.8–71.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.0–27.1%)), excess refined rice and wheat intake (24.6% (22.3–27.2%)) and excess processed meat intake (20.3% (18.3–23.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)); and lowest proportional burdens were in South Asia (55.4% (52.1–60.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally.publishedVersio

    Children’s and adolescents’ rising animal-source food intakes in 1990–2018 were impacted by age, region, parental education and urbanicity

    Get PDF
    Animal-source foods (ASF) provide nutrition for children and adolescents’ physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the world’s child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 15–19 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes.publishedVersio

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.8–14.4 million) incident T2D cases, representing 70.3% (68.8–71.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.0–27.1%)), excess refined rice and wheat intake (24.6% (22.3–27.2%)) and excess processed meat intake (20.3% (18.3–23.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)); and lowest proportional burdens were in South Asia (55.4% (52.1–60.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally
    • 

    corecore