9 research outputs found

    Self-assembled monolayers of electroactive molecules for the preparation of memory devices

    No full text
    El objetivo fundamental de los circuitos eléctricos es la miniaturización utilizando moléculas, de manera individual o el conjunto de ellas, como bloques de construcción electrónicos. Se espera que el pequeño tamaño de los componentes electrónicos reduzca el consumo de energía a la vez que aumente la sensibilidad y el rendimiento del dispositivo. Los esfuerzos que se hacen en investigación están orientados en dos direcciones: la primera está enfocada en el estudio, a nivel fundamental, de nuevas moléculas con propiedades o funcionalidades específicas, que proporcionan un conocimiento más profundo de la estructura molecular, dinámica y reactividad. El segundo se dedica al desarrollo de nuevas técnicas para la implementación de estas moléculas in dispositivos electrónicos. A menudo, para fabricar un dispositivo molecular se necesita depositar las moléculas o materiales en un sustrato adecuado. Es importante controlar cómo afecta el disolvente, el sustrato o la funcionalización molecular en el ensamblaje molecular final y las interacciones moleculares, ya que el ordenamiento y el empaquetamiento de las moléculas son aspectos clave para el funcionamiento de los dispositivos. Esta Tesis Doctoral está enfocada en el desarrollo de nuevos dispositivos moleculares electrónicos basados en monocapas auto-ensambladas de moléculas electroactivas, y en el estudio electroquímico de los procesos de transferencia electrónica asociados a ellos. En la primera parte de la Tesis, se describe el uso de diferentes moléculas redox inmovilizadas en sustratos de oro como interruptores moleculares. El estado de los compuestos electroactivos se puede modular aplicando un potencial específico sobre el sustrato, y se ha implementado satisfactoriamente la respuesta en capacitancia como señal de salida del interruptor. Es importante destacar que se han obtenido estos interruptores moleculares eléctricos usando también geles iónicos como electrolitos sólidos, demostrando la viabilidad de integrar estos sistemas en futuros dispositivos electrónicos y/o flexibles. En la segunda parte de la Tesis, se presenta el estudio del mecanismo de transferencia electrónica, por medios electroquímicos, en una familia de compuestos derivados de radicales de policlorotrifenilmetilos (PTM), enlazados a sustratos de oro. La familia de moléculas de PTM contiene un grupo tiol en el extremo conectado al PTM a través de una cadena alquílica de distintas longitudes. Se ha estudiado el proceso de transferencia electrónica a través de SAMs de PTM en distintos medios electrolíticos y en función del grado de recubrimiento de la superficie del sustrato de oro modificado. Por lo tanto, se ha demostrado que la interacción de los disolventes juega un papel importante en el carácter adiabático del proceso redox. Además, el acoplamiento electrónico entre centros de moléculas de PTM adyacentes favorece la disminución de la constante de transferencia electrónica. Finalmente, en la última parte de la Tesis, se han fabricado transistores orgánicos de efecto campo (OFETs) utilizando un gel iónico como material dieléctrico, y se han estudiado sus propiedades. Los OFET se fabricaron con geometrías tipo “top-gate” y “side-gate”, donde el gel iónico se colocó encima del sustrato con el canal semiconductor. Las propiedades de estos transistores con gel iónico se compararon con estructuras similares como referencia, las cuales están basadas en oxido de silicio convencional, resultando ser bastante interesantes para aplicarlos en transistores orgánicos flexibles y económicos.The ultimate goal of electrical circuits is miniaturization by using single molecules or collections of single molecules as electronic building blocks. It is expected that the smaller size of the electronic components will decrease the power consumption while increasing the sensitivity and the performance of the device. Research efforts are concentrated in two directions. The first one is focused in the study, at a fundamental level, of new molecules with specific properties or functionalities, which provides a deeper understanding of molecular structure, dynamics and reactivity. The second one is dedicated to develop new techniques for the implementation of these molecules in electronic devices. Often, to construct a molecular device it is necessary to deposit molecules or material on a suitable substrate. Since the ordering and packing of the molecules are crucial aspects for the operation of the devices, it is important to have a good control of how solvent, substrate or molecular functionalization influences on the resulting molecular assemblies and the intermolecular interactions. The present Doctoral Thesis is focused on the development of new molecular electronic devices based on electroactive self-assembled monolayers (SAMs), and on the electrochemical study of the electron transfer phenomena associated to them. In the first part of the Thesis, it is described the use of different redox molecules immobilized on gold substrates as molecular switches. The state of the electroactive compounds can be tuned when a specific potential is applied to the substrate, and the capacitance response has been successfully implemented as the read-out of the switch. It is important to highlight that these electrical molecular switches have been also obtained using ion gels as solid electrolytes, demonstrating the feasibility to integrate these systems in future electronic and/or flexible devices. In the second part of the Thesis, it is reported the electron transfer (ET) mechanism study, by electrochemical means, in a family of polychlorothriphenylmethyl radical (PTM) derivative compounds attached to gold substrates. The family of PTM molecules contains a thiol terminal group connected to the PTM through an alkyl chain with different lengths. It has been studied the ET process through PTM-SAMs in different organic electrolytic media and as a function of the surface coverage of the modified gold substrate. Hence, it was demonstrated that the interaction with the solvent plays an important role in the adiabaticity character of the redox process. Further, with neighbouring molecules, the intermolecular electronic coupling between PTM centers promotes a reduction of the ET constant rate. Finally, in the last part of the thesis, it has been fabricated a functioning OFET using an ion gel as gate dielectric, and its properties has been examined. The OFETs were prepared with top-gate and side-gate geometries, where the ion gel was placed on top of the substrate with the semiconductor channel. The ion gel gated OFET properties were compared with a reference OFET structure, which had a conventional SiO2 gate dielectric, demonstrating that the ion gels are highly attractive to be applied in low cost and flexible organic transistors

    Diseño, síntesis y caracterización de nanopigmentos electrocrómicos

    No full text
    La investigación y el desarrollo de nuevos materiales dotados de mayores y mejores prestaciones han conllevado la aparición de nuevas sustancias colorantes con propiedades especiales tales como electrocromismo, termocromismo, etc. Partiendo de estas innovaciones en los colorantes, y junto con los avances realizados entorno a los nanomateriales, se plantea la posibilidad de conseguir desarrollar nanopigmentos funcionales. Es decir, nanopigmentos basados en nanoarcillas y colorantes funcionales. De este modo se alcanzarían tres objetivos: conferir color al material o sustrato, mejorando sus propiedades físico-químicas, aumentar la estabilidad del colorante y dotar al material de funciones especiales, lo cual ampliaría su campo de aplicación.Este trabajo ha sido financiado por el Ministerio de Ciencia e Innovación con el proyecto DPI 2008-06455-C02-02 y el proyecto de I+D+i “Estudio de Viabilidad de las posibilidades y propiedades del electrocromismo en el sector textil para aplicaciones en domótica” entre AITEX y la Universidad de Alicante

    Self-assembled monolayers of electroactive molecules for the preparation of memory devices

    Get PDF
    El objetivo fundamental de los circuitos eléctricos es la miniaturización utilizando moléculas, de manera individual o el conjunto de ellas, como bloques de construcción electrónicos. Se espera que el pequeño tamaño de los componentes electrónicos reduzca el consumo de energía a la vez que aumente la sensibilidad y el rendimiento del dispositivo. Los esfuerzos que se hacen en investigación están orientados en dos direcciones: la primera está enfocada en el estudio, a nivel fundamental, de nuevas moléculas con propiedades o funcionalidades específicas, que proporcionan un conocimiento más profundo de la estructura molecular, dinámica y reactividad. El segundo se dedica al desarrollo de nuevas técnicas para la implementación de estas moléculas in dispositivos electrónicos. A menudo, para fabricar un dispositivo molecular se necesita depositar las moléculas o materiales en un sustrato adecuado. Es importante controlar cómo afecta el disolvente, el sustrato o la funcionalización molecular en el ensamblaje molecular final y las interacciones moleculares, ya que el ordenamiento y el empaquetamiento de las moléculas son aspectos clave para el funcionamiento de los dispositivos. Esta Tesis Doctoral está enfocada en el desarrollo de nuevos dispositivos moleculares electrónicos basados en monocapas auto-ensambladas de moléculas electroactivas, y en el estudio electroquímico de los procesos de transferencia electrónica asociados a ellos. En la primera parte de la Tesis, se describe el uso de diferentes moléculas redox inmovilizadas en sustratos de oro como interruptores moleculares. El estado de los compuestos electroactivos se puede modular aplicando un potencial específico sobre el sustrato, y se ha implementado satisfactoriamente la respuesta en capacitancia como señal de salida del interruptor. Es importante destacar que se han obtenido estos interruptores moleculares eléctricos usando también geles iónicos como electrolitos sólidos, demostrando la viabilidad de integrar estos sistemas en futuros dispositivos electrónicos y/o flexibles. En la segunda parte de la Tesis, se presenta el estudio del mecanismo de transferencia electrónica, por medios electroquímicos, en una familia de compuestos derivados de radicales de policlorotrifenilmetilos (PTM), enlazados a sustratos de oro. La familia de moléculas de PTM contiene un grupo tiol en el extremo conectado al PTM a través de una cadena alquílica de distintas longitudes. Se ha estudiado el proceso de transferencia electrónica a través de SAMs de PTM en distintos medios electrolíticos y en función del grado de recubrimiento de la superficie del sustrato de oro modificado. Por lo tanto, se ha demostrado que la interacción de los disolventes juega un papel importante en el carácter adiabático del proceso redox. Además, el acoplamiento electrónico entre centros de moléculas de PTM adyacentes favorece la disminución de la constante de transferencia electrónica. Finalmente, en la última parte de la Tesis, se han fabricado transistores orgánicos de efecto campo (OFETs) utilizando un gel iónico como material dieléctrico, y se han estudiado sus propiedades. Los OFET se fabricaron con geometrías tipo "top-gate" y "side-gate", donde el gel iónico se colocó encima del sustrato con el canal semiconductor. Las propiedades de estos transistores con gel iónico se compararon con estructuras similares como referencia, las cuales están basadas en oxido de silicio convencional, resultando ser bastante interesantes para aplicarlos en transistores orgánicos flexibles y económicos.The ultimate goal of electrical circuits is miniaturization by using single molecules or collections of single molecules as electronic building blocks. It is expected that the smaller size of the electronic components will decrease the power consumption while increasing the sensitivity and the performance of the device. Research efforts are concentrated in two directions. The first one is focused in the study, at a fundamental level, of new molecules with specific properties or functionalities, which provides a deeper understanding of molecular structure, dynamics and reactivity. The second one is dedicated to develop new techniques for the implementation of these molecules in electronic devices. Often, to construct a molecular device it is necessary to deposit molecules or material on a suitable substrate. Since the ordering and packing of the molecules are crucial aspects for the operation of the devices, it is important to have a good control of how solvent, substrate or molecular functionalization influences on the resulting molecular assemblies and the intermolecular interactions. The present Doctoral Thesis is focused on the development of new molecular electronic devices based on electroactive self-assembled monolayers (SAMs), and on the electrochemical study of the electron transfer phenomena associated to them. In the first part of the Thesis, it is described the use of different redox molecules immobilized on gold substrates as molecular switches. The state of the electroactive compounds can be tuned when a specific potential is applied to the substrate, and the capacitance response has been successfully implemented as the read-out of the switch. It is important to highlight that these electrical molecular switches have been also obtained using ion gels as solid electrolytes, demonstrating the feasibility to integrate these systems in future electronic and/or flexible devices. In the second part of the Thesis, it is reported the electron transfer (ET) mechanism study, by electrochemical means, in a family of polychlorothriphenylmethyl radical (PTM) derivative compounds attached to gold substrates. The family of PTM molecules contains a thiol terminal group connected to the PTM through an alkyl chain with different lengths. It has been studied the ET process through PTM-SAMs in different organic electrolytic media and as a function of the surface coverage of the modified gold substrate. Hence, it was demonstrated that the interaction with the solvent plays an important role in the adiabaticity character of the redox process. Further, with neighbouring molecules, the intermolecular electronic coupling between PTM centers promotes a reduction of the ET constant rate. Finally, in the last part of the thesis, it has been fabricated a functioning OFET using an ion gel as gate dielectric, and its properties has been examined. The OFETs were prepared with top-gate and side-gate geometries, where the ion gel was placed on top of the substrate with the semiconductor channel. The ion gel gated OFET properties were compared with a reference OFET structure, which had a conventional SiO2 gate dielectric, demonstrating that the ion gels are highly attractive to be applied in low cost and flexible organic transistors

    Nanopigments in offset printing inks

    Get PDF
    Comunicación presentada en 36th IARIGAI International Research Conference, Stockholm, September 2009.Nanopigments are a new type of pigment. They are hybrid materials consisting of organic dyes and layered silicate nanoparticles. Nanopigments are already applied to make polymeric coatings and they had shown improvement in mechanical, thermal and stability properties of the substrate and dyes (Batenburg and Fischer, 2001). In this work, nanopigments had been synthesized to be applied in the manufacture of offset printing inks. Therefore, four different nanopigments are pursuit: cyan (C), magenta (M), yellow (Y), and black (K), in order to obtain primary colour for a four-colour-process system

    Desarrollo de tintas offset basadas en nanopigmentos: síntesis, formulación, ensayo y caracterización de propiedades

    No full text
    El presente proyecto, se ha centrado en el estudio de nuevas tintas de impresión para tecnología de impresión offset, en cuyas formulaciones se han incorporado nanopigmentos novedosos y ecológicos, y en la evaluación de su idoneidad para implementarlas industrialmente en un futuro cercano.Esta investigación ha sido financiada por el Instituto de la Mediana y Pequeña Empresa Valenciana, IMPIVA y cofinanciada por los Fondos europeos de Desarrollo Regional, FEDER

    Evaluación espectral y colorimétrica de puntos cuánticos como nuevos emisores de luz

    No full text
    Las nanopartículas semiconductoras (puntos cuánticos) son nanomateriales emisores de luz por luminiscencia a partir de una excitación UV, con prometedoras aplicaciones futuras en nano-biomedicina y nano-optoelectrónica. El comportamiento óptico básico de estos nanomateriales luminiscentes depende principalmente de su composición química, forma y tamaño. En este trabajo se realiza un análisis espectral y colorimétrico preliminar de dos variedades químicas de puntos cuánticos (CdSe y CdTe) en función diferentes variaciones en sus procesos de síntesis. Este análisis comprende el paso de los espectros de absorción/emisión relativa a valores colorimétricos convencionales usando espacios de representación del color recomendados por la Comisión Internacional de Iluminación y Color (CIE) con el fin de evaluar el rango de colores perceptibles, y, correlacionar la evolución de color con las variables implicadas en el proceso de sus síntesis.Ministerio de Ciencia e Innovación (proyectos DPI2008-06455-C02-02 y TEC-2008-06756-C03-03); Generalitat Valencia (proyecto PROMETEO/2009/074)

    Potential Therapeutic Use of Aptamers against HAT1 in Lung Cancer

    No full text
    Lung cancer is one of the leading causes of death worldwide and the most common of all cancer types. Histone acetyltransferase 1 (HAT1) has attracted increasing interest as a potential therapeutic target due to its involvement in multiple pathologies, including cancer. Aptamers are single-stranded RNA or DNA molecules whose three-dimensional structure allows them to bind to a target molecule with high specificity and affinity, thus making them exceptional candidates for use as diagnostic or therapeutic tools. In this work, aptamers against HAT1 were obtained, subsequently characterized, and optimized, showing high affinity and specificity for HAT1 and the ability to inhibit acetyltransferase activity in vitro. Of those tested, the apHAT610 aptamer reduced cell viability, induced apoptosis and cell cycle arrest, and inhibited colony formation in lung cancer cell lines. All these results indicate that the apHAT610 aptamer is a potential drug for the treatment of lung cancer

    Potential Therapeutic Use of Aptamers against HAT1 in Lung Cancer

    No full text
    Lung cancer is one of the leading causes of death worldwide and the most common of all cancer types. Histone acetyltransferase 1 (HAT1) has attracted increasing interest as a potential therapeutic target due to its involvement in multiple pathologies, including cancer. Aptamers are single-stranded RNA or DNA molecules whose three-dimensional structure allows them to bind to a target molecule with high specificity and affinity, thus making them exceptional candidates for use as diagnostic or therapeutic tools. In this work, aptamers against HAT1 were obtained, subsequently characterized, and optimized, showing high affinity and specificity for HAT1 and the ability to inhibit acetyltransferase activity in vitro. Of those tested, the apHAT610 aptamer reduced cell viability, induced apoptosis and cell cycle arrest, and inhibited colony formation in lung cancer cell lines. All these results indicate that the apHAT610 aptamer is a potential drug for the treatment of lung cancer

    Espacios y destinos turísticos en tiempos de globalización y crisis

    Get PDF
    2 volúmenesXII Coloquio de Geografía del Turismo, Ocio y Recreación de la Asociación de Geógrafos Españoles. Colmenarejo (Madrid), del 17 al 19 de junio de 2010.Este libro ha sido editado con la colaboración económica del Ministerio de Ciencia e Innovación (ref. CS02010-10416-E)
    corecore