12 research outputs found

    A physically-based surface-subsurface hydrologic model for clear creek watershed

    Get PDF
    Devastating flooding caused by heavy rains brought economic, social, and environmental impacts in many watersheds across the state of Iowa, USA. From 2011–2013, Iowa suffered eight Presidential Disaster Declarations, encompassing more than 70% of the state. The Clear Creek Watershed covers about 270 km2 with three headwater streams converging in Iowa Township. The watershed comprises 60% of agriculture in the form of corn-soybean rotations, 23% pasture and other grasslands, 10% forest, and 7% urban areas. In this study, a fully coupled distributed surfacesubsurface model, PIHM, was used to predict the hydrologic dynamic response of the Clear Creek Watershed over an annual period. The numerical model takes into account interception, through fall, infiltration, recharge, evapotranspiration, and infiltration, enabling discharge through the surface or subsurface into downstream water bodies or aquifer flows. Evapotranspiration is a function of water content in the soil and vegetation characteristics. The model considers the special distribution of land use and soil type. Overland flow is modeled using the diffusive wave approximation of 2D St. Venant equations. River routing is computed using 1D St. Venant equations. Water content in the soil is modeled using Richard’s equation. Water movement in the unsaturated zone is assumed to be vertical and the saturated groundwater region is modeled using the 2D Dupuit approximation. PIHM uses a finite-volume formulation for solving the system of coupled equations. The resulting ordinary differential equation system is solved with the solver SUNDIALS. The model was calibrated and validated with monitoring data. Model details, convergence challenges and model calibration in the Clear Creek Watershed will be presented and discussed.Publicado en: Mecánica Computacional vol. XXXV, no. 19Facultad de Ingenierí

    Towards full predictions of temperature dynamics in McNary Dam forebay using OpenFOAM

    Get PDF
    Hydroelectric facilities impact water temperature; low velocities in a reservoir increase residence time and enhance heat exchange in surface layers. In this study, an unsteady three-dimensional model was developed to predict the temperature dynamics in the McNary Dam forebay. The model is based on the open-source code OpenFOAM. RANS equations with the Boussinesq approximation were used to solve the flow field. A realizable κ-ε model that accounts for the production of wind turbulence was developed. Solar radiation and convective heat transfer at the free surface were included. The result of the model was compared with the field data collected on August 18, 2004. Changes in diurnal stratification were adequately predicted by the model. Observed vertical and lateral temperature distributions were accurately captured. Results indicate that the model can be used as a numerical tool to assess structural and operational alternatives to reduce the forebay temperature

    Spillway jet regime and total dissolved gas prediction with a multiphase flow model

    No full text
    <p>A numerical model, based on the open source code OpenFOAM, was developed to predict jet regimes and total dissolved gas downstream of spillways. The model utilizes the volume of fluid method to track the interface between air and water. A detached eddy simulation model is used for turbulence closure. Transport and dissolution of bubbles are predicted using an Eulerian approach. A bubble number density equation was implemented to predict bubble size changes caused by dissolution and compression. Total dissolved gas was computed using a transport equation that includes the mass transfer between bubbles and water. The model simultaneously captured spillway jet regimes and distribution of total dissolved gas in a spillway sectional model of McNary Dam. Model parameters, gas volume fraction and bubble size at the entrainment region, were calibrated to match total dissolved gas measured in the field under different dam operations.</p

    Assessing Zebra Mussels’ Impact on Fishway Efficiency: McNary Lock and Dam Case Study

    No full text
    The Columbia River Basin faces a threat from the potential invasion of zebra mussels (Dreissena polymorpha), notorious for their ability to attach to various substrates, including concrete, which is common in fishway construction. Extensive mussel colonization within fishways may affect fish passage by altering flow patterns or creating physical barriers, leading to increased travel times, or potentially preventing passage altogether. Many factors affect mussel habitat suitability including vectors of dispersal, water parameters, and various hydrodynamic quantities, such as water depth, velocity, and turbulence. The objective of this study is to assess the potential for zebra mussels to attach to fishway surfaces and form colonies in the McNary Lock and Dam Oregon-shore fishway and evaluate the potential impact of this infestation on the fishway’s efficiency. A computational fluid dynamics (CFD) model of the McNary Oregon-shore fishway was developed using the open-source code OpenFOAM, with the two-phase solver interFoam. Mesh quality is critical to obtain a reliable solution, so the numerical mesh was refined near the free surface and all solid surfaces to properly capture the complex flow patterns and free surface location. The simulation results for the 6-year average flow rate showed good agreement with the measured water column depth over each weir. Regions susceptible to mussel infestation were identified, and an analysis was performed to determine the mussel’s preference to colonize as a function of the depth-averaged velocity, water depth, and wall shear stress. Habitat suitability criteria were applied to the output of the hydraulic variables from the CFD solution and provided insight into the potential impact on the fishway efficiency. Details on the mesh construction, model setup, and numerical results are presented and discussed
    corecore