3,684 research outputs found

    Oscillons and oscillating kinks in the Abelian-Higgs model

    Full text link
    We study the classical dynamics of the Abelian Higgs model employing an asymptotic multiscale expansion method, which uses the ratio of the Higgs to the gauge field amplitudes as a small parameter. We derive an effective nonlinear Schr\"{o}dinger equation for the gauge field, and a linear equation for the scalar field containing the gauge field as a nonlinear source. This equation is used to predict the existence of oscillons and oscillating kinks for certain regimes of the ratio of the Higgs to the gauge field masses. Results of numerical simulations are found to be in very good agreement with the analytical findings, and show that the oscillons are robust, while kinks are unstable. It is also demonstrated that oscillons emerge spontaneously as a result of the onset of the modulational instability of plane wave solutions of the model. Connections of the obtained solutions with the phenomenology of superconductors is discussed.Comment: arXiv admin note: substantial text overlap with arXiv:1306.386

    Recursion and Path-Integral Approaches to the Analytic Study of the Electronic Properties of C60C_{60}

    Full text link
    The recursion and path-integral methods are applied to analytically study the electronic structure of a neutral C60C_{60} molecule. We employ a tight-binding Hamiltonian which considers both the ss and pp valence electrons of carbon. From the recursion method, we obtain closed-form {\it analytic} expressions for the π\pi and σ\sigma eigenvalues and eigenfunctions, including the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) states, and the Green's functions. We also present the local densities of states around several ring clusters, which can be probed experimentally by using, for instance, a scanning tunneling microscope. {}From a path-integral method, identical results for the energy spectrum are also derived. In addition, the local density of states on one carbon atom is obtained; from this we can derive the degree of degeneracy of the energy levels.Comment: 19 pages, RevTex, 6 figures upon reques

    Spin polarized liquid 3He

    Full text link
    We have employed the constrained variational method to study the influence of spin polarization on the ground state properties of liquid 3He^3{\rm He}. The spin polarized phase, we have found, has stronger correlation with respect to the unpolarized phase. It is shown that the internal energy of liquid 3He^3{\rm He} increases by increasing polarization with no crossing point between polarized and unpolarized energy curves over the liquid density range. The obtained internal energy curves show a bound state, even in the case of fully spin polarized matter. We have also investigated the validity of using a parabolic formula for calculating the energy of spin polarized liquid 3He^3{\rm He}. Finally, we have compared our results with other calculations.Comment: 16 pages, 6 figure

    Phonon Assisted Multimagnon Optical Absorption and Long Lived Two-Magnon States in Undoped Lamellar Copper Oxides

    Full text link
    We calculate the effective charge for multimagnon infrared (IR) absorption assisted by phonons in the parent insulating compounds of cuprate superconductors and the spectra for two-magnon absorption using interacting spin-wave theory. Recent measured bands in the mid IR [Perkins et al. Phys. Rev. Lett. {\bf 71} 1621 (1993)] are interpreted as involving one phonon plus a two-magnon virtual bound state, and one phonon plus higher multimagnon absorption processes. The virtual bound state consists of a narrow resonance occurring when the magnon pair has total momentum close to (π,0)(\pi,0).Comment: 4 page

    Phase diagram of depleted Heisenberg model for CaV4O9

    Full text link
    We have numerically investigated the 1/5-depleted Heisenberg square lattice representing CaV4O9 using the Quantum Monte Carlo loop algorithm. We have determined the phase diagram of the model as a function of the ratio of the two different couplings: bonds within a plaquette and dimer bonds between plaquettes. By calculating both the spin gap and the staggered magnetization we determine the range of stability of the long range ordered (LRO) phase. At isotropic coupling LRO survives the depletion. But the close vicinity of the isotropic point to the spin gap phase leads us to the conclusion that already a small frustrating next nearest neighbor interaction can drive the system into the quantum disordered phase and thus explain the spin gap behavior of CaV4O9

    Instability of antiferromagnetic magnons in strong fields

    Full text link
    We predict that spin-waves in an ordered quantum antiferromagnet (AFM) in a strong magnetic field become unstable with respect to spontaneous two-magnon decays. At zero temperature, the instability occurs between the threshold field HH^* and the saturation field HcH_c. As an example, we investigate the high-field dynamics of a Heisenberg antiferromagnet on a square lattice and show that the single-magnon branch of the spectrum disappears in the most part of the Brillouin zone.Comment: RevTeX, 4 pages, 3 figures, accepted to PR
    corecore