3 research outputs found

    Organic PM Emissions from Vehicles: Composition, O/C Ratio, and Dependence on PM Concentration

    No full text
    <p>A suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Smit facility. Eight on-road, spark-ignition gasoline and three alternative vehicles were tested on a chassis dynamometer and the emissions were diluted to atmospherically relevant concentrations (0.5–30 μg/m<sup>3</sup>). An Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-MS) characterized the real-time behavior of the nonrefractory organic and inorganic particulate matter (PM) in vehicle emissions. It was found that the emission of particulate organic matter (POM) was strongly affected by engine temperature and engine load and that the emission concentrations could vary significantly by vehicle. Despite the small sample size, consistent trends in chemical characteristics were observed. The composition of vehicle POM was found to be related to overall PM mass concentration where the oxygen-to-carbon (O/C) ratio tended to increase at lower concentration and had an average value of 0.057 ± 0.047, with a range from 0.022 to 0.15. The corresponding fraction of particle-phase CO<sub>2</sub><sup>+</sup>, or f<sub>44</sub>, ranged from 1.1% to 8.6% (average = 2.1%) and exhibited a linear variation with O/C. The average mass spectrum from all vehicles tested was also compared to those of hydrocarbon-like organic aerosol (HOA) observed in ambient air and the agreement is very high. The results of these tests offer the vehicle emissions community a first glimpse at the real-time chemical composition and variation of vehicle PM emissions for a variety of conditions and vehicle types at atmospherically relevant conditions and without chemical interferences from other primary or secondary aerosol sources.</p> <p>Copyright 2015 American Association for Aerosol Research</p

    Measuring Particulate Emissions of Light Duty Passenger Vehicles Using Integrated Particle Size Distribution (IPSD)

    No full text
    The California Air Resources Board (ARB) adopted the low emission vehicle (LEV) III particulate matter (PM) standards in January 2012, which require, among other limits, vehicles to meet 1 mg/mi over the federal test procedure (FTP). One possible alternative measurement approach evaluated to support the implementation of the LEV III standards is integrated particle size distribution (IPSD), which reports real-time PM mass using size distribution and effective density. The IPSD method was evaluated using TSI’s engine exhaust particle sizer (EEPS, 5.6–560 nm) and gravimetric filter data from more than 250 tests and 34 vehicles at ARB’s Haagen-Smit Laboratory (HSL). IPSD mass was persistently lower than gravimetric mass by 56–75% over the FTP tests and by 81–84% over the supplemental FTP (US06) tests. Strong covariance between the methods suggests test-to-test variability originates from actual vehicle emission differences rather than measurement accuracy, where IPSD offered no statistical improvement over gravimetric measurement variability

    Primary Gas- and Particle-Phase Emissions and Secondary Organic Aerosol Production from Gasoline and Diesel Off-Road Engines

    No full text
    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35–80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2–4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area
    corecore