25 research outputs found

    Anomalous phase behavior of a soft-repulsive potential with a strictly monotonic force

    Full text link
    We study the phase behavior of a classical system of particles interacting through a strictly convex soft-repulsive potential which, at variance with the pairwise softened repulsions considered so far in the literature, lacks a region of downward or zero curvature. Nonetheless, such interaction is characterized by two length scales, owing to the presence of a range of interparticle distances where the repulsive force increases, for decreasing distance, much more slowly than in the adjacent regions. We investigate, using extensive Monte Carlo simulations combined with accurate free-energy calculations, the phase diagram of the system under consideration. We find that the model exhibits a fluid-solid coexistence line with multiple re-entrant regions, an extremely rich solid polymorphism with solid-solid transitions, and water-like anomalies. In spite of the isotropic nature of the interparticle potential, we find that, among the crystal structures in which the system can exist, there are also a number of non-Bravais lattices, such as cI16 and diamond.Comment: 21 pages, 7 figures, in press on Phys. Rev.

    Liquid-liquid phase transition for an attractive isotropic potential with wide repulsive range

    Get PDF
    We investigate how the phase diagram of a repulsive soft-core attractive potential, with a liquid-liquid phase transition in addition to the standard gas-liquid phase transition, changes by varying the parameters of the potential. We extend our previous work on short soft-core ranges to the case of large soft-core ranges, by using an integral equation approach in the hypernetted-chain approximation. We show, using a modified van der Waals equation we recently introduced, that if there is a balance between the attractive and repulsive part of the potential this potential has two fluid-fluid critical points well separated in temperature and in density. This implies that for the repulsive (attractive) energy U R ( U A ) and the repulsive (attractive) range w R ( w A ) the relation U R ∕ U A ∝ w R ∕ w A holds for short soft-core ranges, while U R ∕ U A ∝ 3 w R ∕ w A holds for large soft-core ranges

    The zero-temperature phase diagram of soft-repulsive particle fluids

    Full text link
    Effective pair interactions with a soft-repulsive component are a well-known feature of polymer solutions and colloidal suspensions, but they also provide a key to interpret the high-pressure behaviour of simple elements. We have computed the zero-temperature phase diagram of four different model potentials with various degrees of core softness. Among the reviewed crystal structures, there are also a number of non-Bravais lattices, chosen among those observed in real systems. Some of these crystals are indeed found to be stable for the selected potentials. We recognize an apparently universal trend for unbounded potentials, going from high- to low-coordinated crystal phases and back upon increasing the pressure. Conversely, a bounded repulsion may lead to intermittent appearance of compact structures with compression and no eventual settling down in a specific phase. In both cases, the fluid phase repeatedly reenters at intermediate pressures, as suggested by a cell-theory treatment of the solids. These findings are of relevance for soft matter in general, but they also offer fresh insight into the mechanisms subtended to solid polymorphism in elemental substances.Comment: 16 pages, 5 figures, to be published on Soft Matte

    Anomalous melting behavior under extreme conditions: hard matter turning "soft"

    Full text link
    We show that a system of particles interacting through the exp-6 pair potential, commonly used to describe effective interatomic forces under high compression, exhibits anomalous melting features such as reentrant melting and a rich solid polymorphism, including a stable BC8 crystal. We relate this behavior to the crossover, with increasing pressure, between two different regimes of local order that are associated with the two repulsive length scales of the potential. Our results provide a unifying picture for the high-pressure melting anomalies observed in many elements and point out that, under extreme conditions, atomic systems may reveal surprising similarities with soft matter.Comment: 10 pages, 4 figure

    Liquid-Liquid Phase Transition for an Attractive Isotropic Potential with Wide Repulsive Range

    Full text link
    Recent experimental and theoretical results have shown the existence of a liquid-liquid phase transition in isotropic systems, such as biological solutions and colloids, whose interaction can be represented via an effective potential with a repulsive soft-core and an attractive part. We investigate how the phase diagram of a schematic general isotropic system, interacting via a soft-core squared attractive potential, changes by varying the parameters of the potential. It has been shown that this potential has a phase diagram with a liquid-liquid phase transition in addition to the standard gas-liquid phase transition and that, for a short-range soft-core, the phase diagram resulting from molecular dynamics simulations can be interpreted through a modified van der Waals equation. Here we consider the case of soft-core ranges comparable with or larger than the hard-core diameter. Because an analysis using molecular dynamics simulations of such systems or potentials is too time-demanding, we adopt an integral equation approach in the hypernetted-chain approximation. Thus we can estimate how the temperature and density of both critical points depend on the potential's parameters for large soft-core ranges. The present results confirm and extend our previous analysis, showing that this potential has two fluid-fluid critical points that are well separated in temperature and in density only if there is a balance between the attractive and repulsive part of the potential. We find that for large soft-core ranges our results satisfy a simple relation between the potential's parameters

    Simple Fluids with Complex Phase Behavior

    Full text link
    We find that a system of particles interacting through a simple isotropic potential with a softened core is able to exhibit a rich phase behavior including: a liquid-liquid phase transition in the supercooled phase, as has been suggested for water; a gas-liquid-liquid triple point; a freezing line with anomalous reentrant behavior. The essential ingredient leading to these features resides in that the potential investigated gives origin to two effective core radii.Comment: 7 pages including 3 eps figures + 1 jpeg figur

    Generic mechanism for generating a liquid-liquid phase transition

    Full text link
    Recent experimental results indicate that phosphorus, a single-component system, can have two liquid phases: a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities is consistent with experimental data for a variety of materials, including single-component systems such as water, silica and carbon. Molecular dynamics simulations of very specific models for supercooled water, liquid carbon and supercooled silica, predict a LDL-HDL critical point, but a coherent and general interpretation of the LDL-HDL transition is lacking. Here we show that the presence of a LDL and a HDL can be directly related to an interaction potential with an attractive part and two characteristic short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state (in particular liquid metals), and such potentials are often used to decribe systems that exhibit a density anomaly. However, our results show that the LDL and HDL phases can occur in systems with no density anomaly. Our results therefore present an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of the density anomaly.Comment: 5 pages, 3 ps Fig
    corecore