9 research outputs found

    Towards a terramechanics for bio-in spired locomotion in granular environments

    Get PDF
    Granular media (GM) present locomotor challenges for terrestrial and extraterrestrial devices because they can flow and solidify in response to localized intrusion of wheels, limbs and bodies. While the development of airplanes and submarines is aided by understanding of hydrodynamics, fundamental theory does not yet exist to describe the complex interactions of locomotors with GM. In this paper, we use experimental, computational, and theoretical approaches to develop a terramechanics for bio-inspired locomotion in granular environments. We use a fluidized bed to prepare GM with a desired global packing fraction, and use empirical force measurements and the Discrete Element Method (DEM) to elucidate interaction mechanics during locomotion-relevant intrusions in GM such as vertical penetration and horizontal drag. We develop a resistive force theory (RFT) to account for more complex intrusions. We use these force models to understand the locomotor performance of two bio-inspired robots moving on and within GM. The sponsor was DARPA/SPAWAR N66001–05-C-8025. For further information, visit Kod*lab

    Sand swimming lizard: sandfish

    Full text link
    We use high-speed x-ray imaging to reveal how a small (~10cm) desert dwelling lizard, the sandfish (Scincus scincus), swims within a granular medium [1]. On the surface, the lizard uses a standard diagonal gait, but once below the surface, the organism no longer uses limbs for propulsion. Instead it propagates a large amplitude single period sinusoidal traveling wave down its body and tail to propel itself at speeds up to ~1.5 body-length/sec. Motivated by these experiments we study a numerical model of the sandfish as it swims within a validated soft sphere Molecular Dynamics granular media simulation. We use this model as a tool to understand dynamics like flow fields and forces generated as the animal swims within the granular media. [1] Maladen, R.D., Ding, Y., Li, C., and Goldman, D.I., Undulatory Swimming in Sand: Subsurface Locomotion of the Sandfish Lizard, Science, 325, 314, 2009NSF Physics of Living System

    Biophysically inspired development of a sand-swimming robot

    Get PDF
    © 2011 MIT PressPresented at Robotics: Science and Systems (RSS) 2010, held at the University of Zaragoza in Spain, from June 27 to June 30, 2010.Previous study of a sand-swimming lizard, the sandfish, Scincus scincus, revealed that the animal swims within granular media at speeds up to 0:4 body-lengths/cycle using body undulation (approximately a single period sinusoidal traveling wave) without limb use [1]. Inspired by this biological experiment and challenged by the absence of robotic devices with comparable subterranean locomotor abilities, we developed a numerical simulation of a robot swimming in a granular medium (modeled using a multi-particle discrete element method simulation) to guide the design of a physical sand-swimming device built with off-the-shelf servo motors. Both in simulation and experiment the robot swims limblessly subsurface and, like the animal, increases its speed by increasing its oscillation frequency. It was able to achieve speeds of up to 0:3 body-lengths/cycle. The performance of the robot measured in terms of its wave efficiency, the ratio of its forward speed to wave speed, was 0:34 0:02, within 8 % of the simulation prediction. Our work provides a validated simulation tool and a functional initial design for the development of robots that can move within yielding terrestrial substrates

    Comparative studies reveal principles of movement on and within granular media

    Get PDF
    To be published in an IMA Springer Volume for the workshop: Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding, June, 2010Terrestrial locomotion can take place on complex substrates such as leaf litter, debris, and soil that flow or solidify in response to stress. While principles of movement in air and water are revealed through study of the hydrodynamic equations of fluid motion, discovery of principles of movement in complex terrestrial environments is less advanced in part because describing the physics of limb and body interaction with such environments remains challenging. We report progress our group has made in discovering principles of movement of organisms and models of organisms (robots) on and within granular materials (GM) like sand. We review current understanding of localized intrusion in GM relevant to foot and body interactions. We discuss the limb-ground interactions of a desert lizard, a hatchling sea turtle, and various robots and reveal that control of granular solidification can generate effective movement. We describe the sensitivity of movement on GM to gait parameters and discuss how changes in material state can strongly affect locomotor performance. We examine subsurface movement, common in desert animals like the sandfish lizard. High speed x-ray imaging resolves subsurface kinematics, while electromyography (EMG) allows muscle activation patterns to be studied. Our resistive force theory, numerical, and robotic models of sand-swimming reveal that subsurface swimming occurs in a “frictional fluid” whose properties differ from Newtonian fluids
    corecore