3 research outputs found

    Promoting Strong Metal Support Interaction: Doping ZnO for Enhanced Activity of Cu/ZnO:M (M = Al, Ga, Mg) Catalysts

    No full text
    The promoting effect of Al, Ga, and Mg on the support in Cu/ZnO catalysts for methanol synthesis has been investigated. Different unpromoted and promoted ZnO supports were synthesized and impregnated with Cu metal in a subsequent step. All materials, supports, and calcined and activated catalysts were characterized by various methods, including contactless (microwave) conductivity measurements under different gas atmospheres. Small amounts of promoters were found to exhibit a significant influence on the properties of the oxide support, concerning textural as well as electronic properties. We found correlations between the conductivity of the ZnO support and the activity of the catalyst in the reverse water-gas shift reaction (rWGS) as well as in methanol synthesis. In rWGS the activation energy and reaction order in H<sub>2</sub> are decreased upon promotion of the ZnO support with the trivalent promoters Al<sup>3+</sup> and Ga<sup>3+</sup>, indicating an electronic promotion. In methanol synthesis, results point to a structural promotion by Al<sup>3+</sup> and Ga<sup>3+</sup>. A detrimental effect of Mg<sup>2+</sup> doping was observed in both reactions. This effect is discussed in the context of the reducibility of ZnO under reaction conditions, which can be tuned by the promoter in different ways. The reducibility is seen as a critical property for the dynamic metal support interaction of the Cu/ZnO system

    Ambient-Pressure Soft X‑ray Absorption Spectroscopy of a Catalyst Surface in Action: Closing the Pressure Gap in the Selective <i>n</i>‑Butane Oxidation over Vanadyl Pyrophosphate

    No full text
    In order to close the pressure gap in the investigation of catalyst surfaces under real operation conditions we have developed a variable-pressure soft X-ray (<i>h</i>ν ≤1.5 keV) absorption cell coupled to a gas analysis system to study the pressure dependency of the electronic and catalytic properties of catalyst surfaces in reactive atmospheres at elevated temperatures. With this setup we investigated the vanadium L<sub>3</sub>-edge and catalytic performance of polycrystalline vanadyl pyrophosphate in the selective oxidation of <i>n</i>-butane to maleic anhydride between 10 and 1000 mbar at 400 °C. As a result, major gas phase and pressure dependent spectral changes are observed at energies attributed to V 2p-3d<sub><i>z</i><sup>2</sup></sub> excitations assigned to vanadium atoms square-pyramidally coordinated to oxygen atoms. This can be interpreted in terms of a shortened vanadyl bond (VO) and an increased vanadium oxidation state with higher pressures. Since this is accompanied by an increasing catalytic activity and selectivity, it indicates that vanadyl oxygen is actively involved in the selective oxidation of the alkane

    Promoted Ceria: A Structural, Catalytic, and Computational Study

    No full text
    The role of trivalent (La, Sm, Gd, and Y) and tetravalent (Hf, Zr, and Ti) dopants in the catalytic, structural, and electronic properties of ceria was investigated. Promoted ceria catalysts were synthesized by coprecipitation with ammonia and tested in HCl and CO oxidation. Ceria catalysts exhibit a medium high reactivity and excellent stability in HCl oxidation. The intrinsic reactivity of ceria in HCl oxidation can be improved by a factor of 2 when doping with Hf and Zr in appropriate quantities, whereas trivalent dopants are detrimental. Although both oxidation reactions rely on the existence of oxygen vacancies, the order of reactivity in HCl and CO oxidation is not completely parallel. The effects of promoters on the electronic conductivity and the vacancy formation energy were studied by contactless conductivity experiments using the microwave cavity perturbation technique and by density functional theory calculations. Furthermore, transport properties were also assessed on the basis of theoretical calculations. The order of oxygen vacancy formation energy follows well the order of conductivity (polaron mobility) (trivalent > tetravalent > undoped) observed under inert and oxidizing conditions. This implies that none of these properties correlates with the reactivity. On the other hand, reducing conditions strongly enhanced the conductivity of Hf- and Zr-doped ceria. In HCl oxidation, only the balanced reduction of both Cl and O vacancy formation energies allows for an enhanced reactivity. Promoters give rise to lattice contraction–expansion modifying vacancy formation energies, adsorption properties, and surface coverages
    corecore