5,789 research outputs found
Numerical assessment in the wild: insights from social carnivores
Playback experiments have proven to be a useful tool to investigate the extent to which wild animals understand numerical concepts and the factors that play into their decisions to respond to different numbers of vocalizing conspecifics. In particular, playback experiments have broadened our understanding of the cognitive abilities of historically understudied species that are challenging to test in the traditional laboratory, such as members of the Order Carnivora. Additionally, playback experiments allow us to assess the importance of numerical information versus other ecologically important variables when animals are making adaptive decisions in their natural habitats. Here, we begin by reviewing what we know about quantity discrimination in carnivores from studies conducted in captivity. We then review a series of playback experiments conducted with wild social carnivores, including African lions, spotted hyenas, and wolves, which demonstrate that these animals can assess the number of conspecifics calling and respond based on numerical advantage. We discuss how the wild studies compliment those conducted in captivity and allow us to gain insights into why wild animals may not always respond based solely on differences in quantity. We then consider the key role that individual discrimination and cross-modal recognition play in the ability of animals to assess the number of conspecifics vocalizing nearby. Finally, we explore new directions for future research in this area, highlighting in particular the need for further work on the cognitive basis of numerical assessment skills and experimental paradigms that can be effective in both captive and wild settings
Proximate factors underpinning receiver responses to deceptive false alarm calls in wild tufted capuchin monkeys: is it counterdeception?
Previous research demonstrates that tufted capuchin monkeys use terrestrial predator alarm calls in a functionally deceptive manner to distract conspecifics when feeding on contestable resources, although the success of this tactic is limited because listeners frequently ignore these calls when given in such situations. While this decreased response rate is suggestive of a counterstrategy to deception by receivers, the proximate factors underpinning the behavior are unclear. The current study aims to test if the decreased response rate to alarm calls in competitive contexts is better explained by the perception of subtle acoustic differences between predator-elicited and deceptive false alarms, or by receivers varying their responses based on the context in which the signal is received. This was tested by first examining the acoustic structure of predator-elicited and deceptive false alarms for any potentially perceptible acoustic differences, and second by comparing the responses of capuchins to playbacks of each of predator-elicited and false alarms, played back in noncompetitive contexts. The results indicate that deceptive false alarms and predator-elicited alarms show, at best, minimal acoustic differences based on the structural features measured. Likewise, playbacks of deceptive false alarms elicited antipredator reactions at the same rate as did predator-elicited alarms, although there was a nonsignificant tendency for false alarms to be more likely to elicit escape reactions. The lack of robust acoustic differences together with the high response rate to false alarms in noncompetitive contexts suggests that the context in which the signal is received best explains receiver responses. It remains unclear, however, if listeners ascribe different meanings to the calls based on context, or if they generally ignore all signals in competitive contexts. Whether or not the decreased response rate of receivers directly stems from the deceptive use of the calls cannot be determined until these latter possibilities are rigorously tested
Damage to the prefrontal cortex increases utilitarian moral judgements
The psychological and neurobiological processes underlying moral judgement have been the focus of many recent empirical studies1–11. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion-related areas of the brain contribute to moral judgement. Here we show that six patients with focal bilateral damage to the ventromedial prefrontal cortex (VMPC), a brain region necessary for the normal generation of emotions and, in particular, social emotions12–14, produce an abnor- mally ‘utilitarian’ pattern of judgements on moral dilemmas that pit compelling considerations of aggregate welfare against highly emotionally aversive behaviours (for example, having to sacrifice one person’s life to save a number of other lives)7,8. In contrast, the VMPC patients’ judgements were normal in other classes of moral dilemmas. These findings indicate that, for a selective set of moral dilemmas, the VMPC is critical for normal judgements of right and wrong. The findings support a necessary role for emotion in the generation of those judgements
Grooming-at-a-distance by exchanging calls in non-human primates
International audienceThe 'social bonding hypothesis' predicts that, in large social groups, functions of gestural grooming should be partially transferred to vocal interactions. Hence, vocal exchanges would have evolved in primates to play the role of grooming-at-a-distance in order to facilitate the maintenance of social cohesion. However, there are few empirical studies testing this hypothesis. To address this point, we compared the rate of contact call exchanges between females in two captive groups of Japanese macaques as a function of female age, dominance rank, genetic relatedness and social affinity measured by spatial proximity and grooming interactions. We found a significant positive relationship between the time spent on grooming by two females and the frequency with which they exchanged calls. Our results conform to the predictions of the social bonding hypothesis, i.e. vocal exchanges can be interpreted as grooming-at-a-distanc
Positive words carry less information than negative words
We show that the frequency of word use is not only determined by the word
length \cite{Zipf1935} and the average information content
\cite{Piantadosi2011}, but also by its emotional content. We have analyzed
three established lexica of affective word usage in English, German, and
Spanish, to verify that these lexica have a neutral, unbiased, emotional
content. Taking into account the frequency of word usage, we find that words
with a positive emotional content are more frequently used. This lends support
to Pollyanna hypothesis \cite{Boucher1969} that there should be a positive bias
in human expression. We also find that negative words contain more information
than positive words, as the informativeness of a word increases uniformly with
its valence decrease. Our findings support earlier conjectures about (i) the
relation between word frequency and information content, and (ii) the impact of
positive emotions on communication and social links.Comment: 16 pages, 3 figures, 3 table
How does cognitive load influence speech perception? : An encoding hypothesis
Two experiments investigated the conditions under which cognitive load exerts an effect on speech perception. These experiments extend earlier research by using a different speech perception task (four-interval oddity task) and by implementing cognitive load through a task often thought to be modular, namely, face processing. In the cognitive-load conditions, participants were required to remember two faces presented before the speech stimuli. In Experiment 1, performance in the speech-perception task under cognitive load was not impaired in comparison to a no-load baseline condition. In Experiment 2, we modified the load condition minimally such that it required encoding of the two faces simultaneously with the speech stimuli. As a reference condition, we also used a visual search task that in earlier experiments had led to poorer speech perception. Both concurrent tasks led to decrements in the speech task. The results suggest that speech perception is affected even by loads thought to be processed modularly, and that, critically, encoding in working memory might be the locus of interference
Molecular basis of structure and function of the microvillus membrane of intestinal epithelial cells
Correlation of molecular structure with biochemical functions of the plasma membrane of the microvilli of intestinal epithelial cells has been investigated by biochemical and electron microscopic procedures. Repeating
particles, measuring approximately 60 Åin diameter, were found on the surface of the microvilli membrane which had been isolated or purified from rabbit intestinal epithelial cells and negatively stained with phosphotungstic acid. These particles were proved to be inherent components of the microvillus membrane, attached to the outer surface of its trilaminar structure, and were designated as the elementary particles of the microvilli
of intestinal epithelial cells. Biochemical and electron microscopic identification of these elementary particles has been carried out by isolation of the elementary particles with papain from the isolated microvillus membrane, followed by purification of the particles by chromatographies on DEAE-cellulose and Sephadex columns. The partially purified particles containing invertase and leucine aminopeptidase are similar in size and structure to those of the elementary particles in the microvillus membrane. Evidence indicates that each of the elementary particles coincide with or include an enzyme molecule such as disaccharidase or peptidase, which carry out the terminal hydrolytic digestion of carbohydrates and proteins, respectively, on the surface of the microvillus membrane. Magnesium ionactivated adenosine triphosphatase and alkaline phosphatase cannot be solubilized with papain but remains in the smooth-surface membrane after
the elementary particles have been removed. Cytochemical electron microscopic observation revealed that the active site of magnesium ion-activated adenosine triphosphatase is localized predominantly in the inner surface of the trilaminar structure of the microvillus membrane.</p
Resolving the infinitude controversy
A simple inductive argument shows natural languages to have infinitly many sentences, but workers in the field have uncovered clear evidence of a diverse group of ‘exceptional’ languages from Proto-Uralic to Dyirbal and most recently, Pirahã, that appear to lack recursive devices entirely. We argue that in an information-theoretic setting non-recursive natural languages appear neither exceptional nor functionally inferior to the recursive majority
Do red deer stags (Cervus elaphus) use roar fundamental frequency (F0) to assess rivals?
It is well established that in humans, male voices are disproportionately lower pitched than female voices, and recent studies suggest that this dimorphism in fundamental frequency (F0) results from both intrasexual (male competition) and intersexual (female mate choice) selection for lower pitched voices in men. However, comparative investigations indicate that sexual dimorphism in F0 is not universal in terrestrial mammals. In the highly polygynous and sexually dimorphic Scottish red deer Cervus elaphus scoticus, more successful males give sexually-selected calls (roars) with higher minimum F0s, suggesting that high, rather than low F0s advertise quality in this subspecies. While playback experiments demonstrated that oestrous females prefer higher pitched roars, the potential role of roar F0 in male competition remains untested. Here we examined the response of rutting red deer stags to playbacks of re-synthesized male roars with different median F0s. Our results show that stags’ responses (latencies and durations of attention, vocal and approach responses) were not affected by the F0 of the roar. This suggests that intrasexual selection is unlikely to strongly influence the evolution of roar F0 in Scottish red deer stags, and illustrates how the F0 of terrestrial mammal vocal sexual signals may be subject to different selection pressures across species. Further investigations on species characterized by different F0 profiles are needed to provide a comparative background for evolutionary interpretations of sex differences in mammalian vocalizations
Scaling Laws in Human Language
Zipf's law on word frequency is observed in English, French, Spanish,
Italian, and so on, yet it does not hold for Chinese, Japanese or Korean
characters. A model for writing process is proposed to explain the above
difference, which takes into account the effects of finite vocabulary size.
Experiments, simulations and analytical solution agree well with each other.
The results show that the frequency distribution follows a power law with
exponent being equal to 1, at which the corresponding Zipf's exponent diverges.
Actually, the distribution obeys exponential form in the Zipf's plot. Deviating
from the Heaps' law, the number of distinct words grows with the text length in
three stages: It grows linearly in the beginning, then turns to a logarithmical
form, and eventually saturates. This work refines previous understanding about
Zipf's law and Heaps' law in language systems.Comment: 6 pages, 4 figure
- …
