95 research outputs found

    Haploinsufficiency of the NOTCH1 Receptor as a Cause of Adams-Oliver Syndrome With Variable Cardiac Anomalies.

    Get PDF
    BACKGROUND: Adams-Oliver syndrome (AOS) is a rare disorder characterized by congenital limb defects and scalp cutis aplasia. In a proportion of cases, notable cardiac involvement is also apparent. Despite recent advances in the understanding of the genetic basis of AOS, for the majority of affected subjects, the underlying molecular defect remains unresolved. This study aimed to identify novel genetic determinants of AOS. METHODS AND RESULTS: Whole-exome sequencing was performed for 12 probands, each with a clinical diagnosis of AOS. Analyses led to the identification of novel heterozygous truncating NOTCH1 mutations (c.1649dupA and c.6049_6050delTC) in 2 kindreds in which AOS was segregating as an autosomal dominant trait. Screening a cohort of 52 unrelated AOS subjects, we detected 8 additional unique NOTCH1 mutations, including 3 de novo amino acid substitutions, all within the ligand-binding domain. Congenital heart anomalies were noted in 47% (8/17) of NOTCH1-positive probands and affected family members. In leukocyte-derived RNA from subjects harboring NOTCH1 extracellular domain mutations, we observed significant reduction of NOTCH1 expression, suggesting instability and degradation of mutant mRNA transcripts by the cellular machinery. Transient transfection of mutagenized NOTCH1 missense constructs also revealed significant reduction in gene expression. Mutant NOTCH1 expression was associated with downregulation of the Notch target genes HEY1 and HES1, indicating that NOTCH1-related AOS arises through dysregulation of the Notch signaling pathway. CONCLUSIONS: These findings highlight a key role for NOTCH1 across a range of developmental anomalies that include cardiac defects and implicate NOTCH1 haploinsufficiency as a likely molecular mechanism for this group of disorders

    Age-Related Immunity to Meningococcal Serogroup C Vaccination: An Increase in the Persistence of IgG2 Correlates with a Decrease in the Avidity of IgG

    Get PDF
    Contains fulltext : 97618.pdf (publisher's version ) (Open Access)Background All children and adolescents between 1 and 19 years of age in The Netherlands received a single meningococcal serogroup C conjugate (MenCC) vaccine in 2002. During follow-up 4–5 years later, the persistence of MenC polysaccharide-specific IgG was found to be dependent on age of vaccination with higher IgG levels in the oldest immunized age categories. Methods and Findings Two cross-sectional population-based serum banks, collected in 1995/1996 and in 2006/2007, were used for this study. We measured MenC polysaccharide-specific IgM, the IgG1 and IgG2 subclasses and determined the avidity of the IgG antibodies. We report that the age-related persistence of IgG after immunization with the MenCC vaccine seemed to result from an increase of IgG2 levels with age, while IgG1 levels remained stable throughout the different age-cohorts. Furthermore, an age-related increase in IgM levels was observed, correlating with the persistence of IgG antibodies with age. It is noteworthy that the increase in IgG2 correlated with a reduced IgG-avidity with age. Conclusion These date indicate that the classical characteristics of a T-cell-dependent antibody response as elicited by protein based vaccines might not be completely applicable when conjugate vaccines are administered to older children and adolescents up to 18 years of age. The response elicited by the MenCC vaccine seemed to be more a mixture of both T cell dependent and T cell independent responses in terms of humoral immunological characteristics

    Monoclonal Antibodies to Meningococcal Factor H Binding Protein with Overlapping Epitopes and Discordant Functional Activity

    Get PDF
    Background: Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Methods and Principal Findings: Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, whic

    Immunity against Neisseria meningitidis Serogroup C in the Dutch Population before and after Introduction of the Meningococcal C Conjugate Vaccine

    Get PDF
    Contains fulltext : 88187.pdf (publisher's version ) (Open Access)BACKGROUND: In 2002 a Meningococcal serogroup C (MenC) conjugate vaccine, with tetanus toxoid as carrier protein, was introduced in the Netherlands as a single-dose at 14 months of age. A catch-up campaign was performed targeting all individuals aged 14 months to 18 years. We determined the MenC-specific immunity before and after introduction of the MenC conjugate (MenCC) vaccine. METHODS AND FINDINGS: Two cross-sectional population-based serum banks, collected in 1995/1996 (n = 8539) and in 2006/2007 (n = 6386), were used for this study. The main outcome measurements were the levels of MenC polysaccharide(PS)-specific IgG and serum bactericidal antibodies (SBA) after routine immunization, 4-5 years after catch-up immunization or by natural immunity. There was an increasing persistence of PS-specific IgG and SBA with age in the catch-up immunized cohorts 4-5 years after their MenCC immunization (MenC PS-specific IgG, 0.25 microg/ml (95%CI: 0.19-0.31 microg/ml) at age 6 years, gradually increasing to 2.34 microg/ml,(95%CI: 1.70-3.32 microg/ml) at age 21-22 years). A comparable pattern was found for antibodies against the carrier protein in children immunized above 9 years of age. In case of vaccination before the age of 5 years, PS-specific IgG was rapidly lost. For all age-cohorts together, SBA seroprevalence (> or =8) increased from 19.7% to 43.0% in the pre- and post-MenC introduction eras, respectively. In non-immunized adults the SBA seroprevalence was not significantly different between the pre- and post-MenC introduction periods, whereas PS-specific IgG was significantly lower in the post-MenC vaccination (GMT, age > or =25 years, 0.10 microg/ml) era compared to the pre-vaccination (GMT, age > or =25 years, 0.43 microg/ml) era. CONCLUSION: MenCC vaccination administered above 5 years of age induced high IgG levels compared to natural exposure, increasing with age. In children below 14 months of age and non-immunized cohorts lower IgG levels were observed compared to the pre-vaccination era, whereas functional levels remained similar in adults. Whether the lower IgG poses individuals at increased risk for MenC disease should be carefully monitored. Large-scale introduction of a MenCC vaccine has led to improved protection in adolescents, but in infants a single-dose schedule may not provide sufficient protection on the long-term and therefore a booster-dose early in adolescence should be considered

    Epidemiology, Molecular Characterization and Antibiotic Resistance of Neisseria meningitidis from Patients ≤15 Years in Manhiça, Rural Mozambique

    Get PDF
    BACKGROUND: The epidemiology of meningococcal disease in Mozambique and other African countries located outside the "meningitis belt" remains widely unknown. With the event of upcoming vaccines microbiological and epidemiological information is urgently needed. METHODS: Prospective surveillance for invasive bacterial infections was conducted at the Manhiça District hospital (rural Mozambique) among hospitalized children below 15 years of age. Available Neisseria meningitidis isolates were serogrouped and characterized by Multilocus Sequence Typing (MLST). Antibiotic resistance was also determined. RESULTS: Between 1998 and 2008, sixty-three cases of confirmed meningococcal disease (36 meningitis, 26 sepsis and 1 conjunctivitis) were identified among hospitalized children. The average incidence rate of meningococcal disease was 11.6/100,000 (8/100,000 for meningitis and 3.7/100,000 for meningococcemia, respectively). There was a significant rise on the number of meningococcal disease cases in 2005-2006 that was sustained till the end of the surveillance period. Serogroup was determined for 43 of the 63 meningococcal disease cases: 38 serogroup W-135, 3 serogroup A and 2 serogroup Y. ST-11 was the most predominant sequence type and strongly associated with serogroup W-135. Two of the three serogroup A isolates were ST-1, and both serogroup Y isolates were ST-175. N. meningitidis remained highly susceptible to all antibiotics used for treatment in the country, although the presence of isolates presenting intermediate resistance to penicillin advocates for continued surveillance. CONCLUSIONS: Our data show a high rate of meningococcal disease in Manhiça, Mozambique, mainly caused by serogroup W-135 ST-11 strains, and advocates for the implementation of a vaccination strategy covering serogroup W-135 meningococci in the country

    Meningococcal Factor H Binding Proteins in Epidemic Strains from Africa: Implications for Vaccine Development

    Get PDF
    Epidemics of meningococcal meningitis are common in sub-Saharan Africa. Most are caused by encapsulated serogroup A strains, which rarely cause disease in industrialized countries. A serogroup A polysaccharide protein conjugate vaccine recently was introduced in some countries in sub-Saharan Africa. The antibodies induced, however, may allow replacement of serogroup A strains with serogroup W-135 or X strains, which also cause epidemics in this region. Protein antigens, such as factor H binding protein (fHbp), are promising for prevention of meningococcal serogroup B disease. These proteins also are present in strains with other capsular serogroups. Here we report investigation of the potential of fHbp vaccines for prevention of disease caused by serogroup A, W-135 and X strains from Africa. Four fHbp amino acid sequence variants accounted for 81% of the 106 African isolates studied. While there was little cross-protective activity by antibodies elicited in mice by recombinant fHbp vaccines from each of the four sequence variants, a prototype native outer membrane vesicle (NOMV) vaccine from a mutant with over-expressed fHbp elicited antibodies with broad protective activity. A NOMV vaccine has the potential to supplement coverage by the group A conjugate vaccine and help prevent emergence of disease caused by non-serogroup A strains

    Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection

    Get PDF
    The global supply of COVID-19 vaccines remains limited. An understanding of the immune response that is predictive of protection could facilitate rapid licensure of new vaccines. Data from a randomized efficacy trial of the ChAdOx1 nCoV-19 (AZD1222) vaccine in the United Kingdom was analyzed to determine the antibody levels associated with protection against SARS-CoV-2. Binding and neutralizing antibodies at 28 days after the second dose were measured in infected and noninfected vaccine recipients. Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection. A vaccine efficacy of 80% against symptomatic infection with majority Alpha (B.1.1.7) variant of SARS-CoV-2 was achieved with 264 (95% CI: 108, 806) binding antibody units (BAU)/ml: and 506 (95% CI: 135, not computed (beyond data range) (NC)) BAU/ml for anti-spike and anti-RBD antibodies, and 26 (95% CI: NC, NC) international unit (IU)/ml and 247 (95% CI: 101, NC) normalized neutralization titers (NF50) for pseudovirus and live-virus neutralization, respectively. Immune markers were not correlated with asymptomatic infections at the 5% significance level. These data can be used to bridge to new populations using validated assays, and allow extrapolation of efficacy estimates to new COVID-19 vaccines

    Mysid crustaceans as standard models for the screening and testing of endocrine-disrupting chemicals

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 205-219, doi:10.1007/s10646-006-0122-0.Investigative efforts into the potential endocrine-disrupting effects of chemicals have mainly concentrated on vertebrates, with significantly less attention paid to understanding potential endocrine disruption in the invertebrates. Given that invertebrates account for at least 95% of all known animal species and are critical to ecosystem structure and function, it remains essential to close this gap in knowledge and research. The lack of progress regarding endocrine disruption in invertebrates is still largely due to: (1) our ignorance of mode-of-action, physiological control, and hormone structure and function in invertebrates; (2) lack of a standardized invertebrate assay; (3) the irrelevance to most invertebrates of the proposed activity-based biological indicators for endocrine disruptor exposure (androgen, estrogen and thyroid); (4) limited field studies. Past and ongoing research efforts using the standard invertebrate toxicity test model, the mysid shrimp, have aimed at addressing some of these issues. The present review serves as an update to a previous publication on the use of mysid shrimp for the evaluation of endocrine disruptors (Verslycke et al., 2004a). It summarizes recent investigative efforts that have significantly advanced our understanding of invertebrate-specific endocrine toxicity, population modeling, field studies, and transgeneration standard test development using the mysid model.Supported by a Fellowship of the Belgian American Educational Foundation
    corecore