37 research outputs found

    Temperature Increase of the Foil Stripping Material in the AGS-RHIC Beam Transfer Line

    Full text link

    Exact Z2Z^2 scaling of pair production in the high-energy limit of heavy-ion collisions

    Get PDF
    The two-center Dirac equation for an electron in the external electromagnetic field of two colliding heavy ions in the limit in which the ions are moving at the speed of light is exactly solved and nonperturbative amplitudes for free electron-positron pair production are obtained. We find the condition for the applicability of this solution for large but finite collision energy, and use it to explain recent experimental results. The observed scaling of positron yields as the square of the projectile and target charges is a result of an exact cancellation of a nonperturbative charge dependence and holds as well for large coupling. Other observables would be sensitive to nonperturbative phases.Comment: 4 pages, Revtex, no figures, submitted to PR

    Structure of the Coulomb and unitarity corrections to the cross section of e+ee^+e^- pair production in ultra-relativistic nuclear collisions

    Get PDF
    We analyze the structure of the Coulomb and unitarity corrections to the single pair production as well as the cross section for the multiple pair production. In the external field approximation we consider the probability of e+ee^+e^- pair production at fixed impact parameter ρ\rho between colliding ultra-relativistic heavy nuclei. We obtain the analytical result for this probability at large ρ\rho as compared to the electron Compton wavelength. We estimate also the unitary corrections to the total cross section of the process.Comment: 10 pages, 2 figures, RevTeX, references correcte

    Effect of continuum couplings in fusion of halo 11^{11}Be on 208^{208}Pb around the Coulomb barrier

    Get PDF
    The effect of continuum couplings in the fusion of the halo nucleus 11^{11}Be on 208^{208}Pb around the Coulomb barrier is studied using a three-body model within a coupled discretised continuum channels (CDCC) formalism. We investigate in particular the role of continuum-continuum couplings. These are found to hinder total, complete and incomplete fusion processes. Couplings to the projectile 1p1/21p_{1/2} bound excited state redistribute the complete and incomplete fusion cross sections, but the total fusion cross section remains nearly constant. Results show that continuum-continuum couplings enhance the irreversibility of breakup and reduce the flux that penetrates the Coulomb barrier. Converged total fusion cross sections agree with the experimental ones for energies around the Coulomb barrier, but underestimate those for energies well above the Coulomb barrier.Comment: 15 pages, 7 figures, accepted in Phys. Rev.

    Higher Order Processes in Electromagnetic Production of Electron Positron Pairs in Relativistic Heavy Ion Collisions

    Get PDF
    We study higher-order effects in the electromagnetic production of electron-positron pairs in relativistic heavy ion collisions. Treating the field of the heavy ions as an external field and neglecting the interaction among electrons and positrons, we show that the NN-pair creation amplitude is the antisymmetrised product of NN one-pair creation amplitudes and the vacuum amplitude. Neglecting contributions coming from exchange terms, we show that the total probability for NN pairs is approximately a Poisson distribution. We investigate further the structure of the reduced one-pair amplitude, concentrating especially on multiple-particle corrections. We calculate the first of these corrections in second order Magnus theory based on our previous result in second-order Born approximation for impact parameter bb zero. Explicit calculations show that the total probability is increased up to 10 \% by this correction for realistic collider parameters. The calculations can also be used to confirm the use of the Poisson distribution for the total probability.Comment: 29 pages RevTeX and 12 uuencoded figures (compressed postscript

    Coulomb Effects on Electromagnetic Pair Production in Ultrarelativistic Heavy-Ion Collisions

    Get PDF
    We discuss the implications of the eikonal amplitude on the pair production probability in ultrarelativistic heavy-ion transits. In this context the Weizs\"acker-Williams method is shown to be exact in the ultrarelativistic limit, irrespective of the produced particles' mass. A new equivalent single-photon distribution is derived which correctly accounts for the Coulomb distortions. As an immediate application, consequences for unitarity violation in photo-dissociation processes in peripheral heavy-ion encounters are discussed.Comment: 13 pages, 4 .eps figure

    Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions

    Get PDF
    We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close connection with gauge transformations which transform the dynamics into a representation in which the interaction between the electron and a distant ion is of short range. We describe the implications of this relationship for solving the time-dependent Dirac equation for extremely relativistic collisions.Comment: 12 pages, RevTeX, 2 figures, submitted to PR

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres
    corecore