67 research outputs found

    EphB Receptors Coordinate Migration and Proliferation in the Intestinal Stem Cell Niche

    Get PDF
    SummaryMore than 1010 cells are generated every day in the human intestine. Wnt proteins are key regulators of proliferation and are known endogenous mitogens for intestinal progenitor cells. The positioning of cells within the stem cell niche in the intestinal epithelium is controlled by B subclass ephrins through their interaction with EphB receptors. We report that EphB receptors, in addition to directing cell migration, regulate proliferation in the intestine. EphB signaling promotes cell-cycle reentry of progenitor cells and accounts for approximately 50% of the mitogenic activity in the adult mouse small intestine and colon. These data establish EphB receptors as key coordinators of migration and proliferation in the intestinal stem cell niche

    Dissociation of EphB2 Signaling Pathways Mediating Progenitor Cell Proliferation and Tumor Suppression

    Get PDF
    SummarySignaling proteins driving the proliferation of stem and progenitor cells are often encoded by proto-oncogenes. EphB receptors represent a rare exception; they promote cell proliferation in the intestinal epithelium and function as tumor suppressors by controlling cell migration and inhibiting invasive growth. We show that cell migration and proliferation are controlled independently by the receptor EphB2. EphB2 regulated cell positioning is kinase-independent and mediated via phosphatidylinositol 3-kinase, whereas EphB2 tyrosine kinase activity regulates cell proliferation through an Abl-cyclin D1 pathway. Cyclin D1 regulation becomes uncoupled from EphB signaling during the progression from adenoma to colon carcinoma in humans, allowing continued proliferation with invasive growth. The dissociation of EphB2 signaling pathways enables the selective inhibition of the mitogenic effect without affecting the tumor suppressor function and identifies a pharmacological strategy to suppress adenoma growth

    The Ephrin A1–EphA2 System Promotes Cardiac Stem Cell Migration After Infarction

    No full text
    • …
    corecore