19 research outputs found

    Run-up from impact tsunami

    Get PDF

    Hydrodynamic modeling of tsunamis from the Currituck landslide

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 264 (2009): 41-52, doi:10.1016/j.margeo.2008.09.005.Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40–50 km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.Research conducted by Lynett for this paper was partially supported by grants from the National Science Foundation (CBET- 0427014, CMMI-0619083)

    Suspended and bedload transport in the surfzone : implications for sand transport models

    Get PDF
    ACKNOWLEDGMENTS The research presented in this paper is conducted within the SINBAD project, funded by STW (12058) and EPSRC (EP/J00507X/1, EP/J005541/1), and received additional funding through the European Community’s FP7 project Hydralab IV (contract no. 261520).Publisher PD

    The 28 November 2020 landslide, tsunami, and outburst flood – a hazard cascade associated with rapid deglaciation at Elliot Creek, British Columbia, Canada

    Get PDF
    We describe and model the evolution of a recent landslide, tsunami, outburst flood, and sediment plume in the southern Coast Mountains, British Columbia, Canada. On November 28, 2020, about 18 million m3 of rock descended 1,000 m from a steep valley wall and traveled across the toe of a glacier before entering a 0.6 km2 glacier lake and producing >100-m high run-up. Water overtopped the lake outlet and scoured a 10-km long channel before depositing debris on a 2-km2 fan below the lake outlet. Floodwater, organic debris, and fine sediment entered a fjord where it produced a 60+km long sediment plume and altered turbidity, water temperature, and water chemistry for weeks. The outburst flood destroyed forest and salmon spawning habitat. Physically based models of the landslide, tsunami, and flood provide real-time simulations of the event and can improve understanding of similar hazard cascades and the risk they pose

    Source Processes for the Probabilistic Assessment of Tsunami Hazards

    No full text
    The importance of tsunami hazard assessment has increased in recent years as a result of catastrophic consequences from events such as the 2004 Indian Ocean and 2011 Japan tsunamis. In particular, probabilistic tsunami hazard assessment (PTHA) methods have been emphasized to include all possible ways a tsunami could be generated. Owing to the scarcity of tsunami observations, a computational approach is used to define the hazard. This approach includes all relevant sources that may cause a tsunami to impact a site and all quantifiable uncertainty. Although only earthquakes were initially considered for PTHA, recent efforts have also attempted to include landslide tsunami sources. Including these sources into PTHA is considerably more difficult because of a general lack of information on relating landslide area and volume to mean return period. The large variety of failure types and rheologies associated with submarine landslides translates to considerable uncertainty in determining the efficiency of tsunami generation. Resolution of these and several other outstanding problems are described that will further advance PTHA methodologies leading to a more accurate understanding of tsunami hazard

    RANS-VOF modeling of hydrodynamics and sand transport under full-scale non-breaking and breaking waves

    Get PDF
    A 2D RANS-VOF model is used to simulate the flow and sand transport for two different full-scale laboratory experiments: i) non-breaking waves over a horizontal sand bed (Schretlen et al., 2011) and ii) plunging breaking waves over a barred mobile bed profile (Van der Zanden et al., 2016). For the first time, the model is not only tested and validated in terms of water surface and outer flow hydrodynamics, but also in terms of wave boundary layer processes and sediment concentration patterns. It is shown that the model is capable of reproducing the outer flow (mean currents and turbulence patterns) as well as the spatial and temporal development of the wave boundary layer. The simulations of sediment concentration distributions across the breaking zone show the relevance of accounting for turbulence effects on computing suspended sediment pick-up from the bed

    Convergence pal\ue9oc\ue9r\ue9belleuse et n\ue9oc\ue9r\ue9belleuse sur les neurones thalamiques de la voie c\ue9r\ue9bello-thalamo-corticale.

    No full text
    The South-Holland coast of the Netherlands undergoes the influence of the Rhine river plume released from the Rotterdam waterways. An experiment, STRAINS, was conducted to study the impact of the fresh water on the nearshore hydrodynamics and sand transport. As part of the experiment, an instrumented bottom frame measured the near-bed hydrodynamics at 12 m depth. The flow was decomposed in the tidal, wave and turbulent component. During moderate energetic wave conditions the cross-shore tidal flow was of similar magnitude as the wave orbital flow. The cross-shore tidal flow was asymmetric and larger in the seaward direction. The cross-shore tidal component may be generated by tidal straining due to the river plume.</p

    Application of a new sand transport formula within the cross-shore morphodynamic model Unibest-TC

    No full text
    In this paper, we have implemented and tested the new SANTOSS sand transport formula with the cross-shore morphodynamic model UNIBEST-TC using data from the LIP and Grasso wave flume experiments. It is shown that the total net sand transport is a delicate balance between wave- and current-related transport in the wave boundary layer (which can be on- or offshore-directed) and offshore-directed current-related suspended load above it. The change from onshore to offshore net transport for the two Grasso cases was reproduced by the SANTOSS model and seems to be due to the increasing importance of phase-lags between intra-wave velocities and sand concentrations. More generally, measured net sand transport rates are reasonably well reproduced by the SANTOSS formula outside the surf zone if orbital velocities and ripple heights are predicted correctly and phase-lags between velocities and suspended sand concentrations are accounted for
    corecore