89 research outputs found

    Analysis of the torque capacity of a completely customized lingual appliance of the next generation

    Get PDF
    INTRODUCTION: In lingual orthodontic therapy, effective torque control of the incisors is crucial due to the biomechanical particularities associated with the point of force application and the tight link between third order deviations and vertical tooth position. AIM: The aim of the present in vitro investigation was to analyze the torque capacity of a completely customized lingual appliance of the next generation (WIN) in combination with different finishing archwire dimensions. METHODS: Using a typodont of the upper arch carrying the WIN appliance, slot filling and undersized individualized β-titanium archwires were engaged. Horizontal forces ranging from 0 to 100 cN were applied at the central incisor by means of spring gauges. The resulting angular deviations were recorded and the corresponding torque moments were calculated. RESULTS: For fullsize archwires (0.018”×0.018” β-titanium and 0.018”×0.025” β-titanium), an initial torque play of 0-2° had to be overcome prior to the development of an effective torque moment. Thereafter, a linear correlation between torque angle and torque moment developed for both archwire dimensions with steeper slopes calculated for the specimens with the larger dimension. A torque moment of 2 Nmm required for effective torque correction was noted after a minimum of 2-3° of twist for the 0.018”×0.018” β-titanium wires as compared to 2-4° for the 0.018”×0.025” β-titanium study sample. When undersized archwires were analyzed (0.0175”×0.0175” β-titanium), the measured torque play ranged from 5-7°. After 8-12° of torque angle, the threshold of 2 Nmm was reached. A linear relationship between twist angle and torque moment in which the steepness of the slopes was generally flatter than the ones calculated for the slot filling archwires was noted. CONCLUSIONS: Given the high precision of the bracket slot-archwire-combination provided with the WIN appliance, an effective torque control can be clinically realized

    Cleidocranial dysplasia: a review of the dental, historical, and practical implications with an overview of the South African experience

    Get PDF
    Cleidocranial dysplasia (CCD) is an uncommon but well-known genetic skeletal condition. Several hundred affected persons are members of a large extended family in the Cape Town Mixed Ancestry community of South Africa. The clinical manifestations are often innocuous, but hyperdontia and other developmental abnormalities of the teeth are a major feature and may require special dental management. Over the past 40 years, the authors have encountered more than 100 affected persons in Cape Town. Emphasis has been on dental management, but medical, genetic, and social problems have also been addressed. In this article, we have reviewed the manifestations of the disorder in the light of our own experience, and performed a literature search with emphasis on the various approaches to dental management and treatment options in CCD. Advances in the understanding of the biomolecular pathogenesis of CCD are outlined and the international and local history of the disorder is documented.Web of Scienc

    In vitro Models of Bone Remodelling and Associated Disorders

    Get PDF
    Disruption of bone remodelling by diseases such as osteoporosis results in an imbalance between bone formation by osteoblasts and resorption by osteoclasts. Research into these metabolic bone disorders is primarily performed in vivo; however, in the last decade there has been increased interest in generating in vitro models that can reduce or replace our reliance on animal testing. With recent advances in biomaterials and tissue engineering the feasibility of laboratory-based alternatives is growing; however, to date there are no established in vitro models of bone remodelling. In vivo, remodelling is performed by organised packets of osteoblasts and osteoclasts called bone multicellular units (BMUs). The key determinant of whether osteoclasts form and remodelling occurs is the ratio between RANKL, a cytokine which stimulates osteoclastogenesis, and OPG, its inhibitor. This review initially details the different circumstances, conditions, and factors which have been found to modulate the RANKL:OPG ratio, and fundamental factors to be considered if a robust in vitro model is to be developed. Following this, an examination of what has been achieved thus far in replicating remodelling in vitro using three-dimensional co-cultures is performed, before overviewing how such systems are already being utilised in the study of associated diseases, such as metastatic cancer and dental disorders. Finally, a discussion of the most important considerations to be incorporated going forward is presented. This details the need for the use of cells capable of endogenously producing the required cytokines, application of mechanical stimulation, and the presence of appropriate hormones in order to produce a robust model of bone remodelling
    • …
    corecore