3,991 research outputs found

    Electronic energy spectra and wave functions on the square Fibonacci tiling

    Full text link
    We study the electronic energy spectra and wave functions on the square Fibonacci tiling, using an off-diagonal tight-binding model, in order to determine the exact nature of the transitions between different spectral behaviors, as well as the scaling of the total bandwidth as it becomes finite. The macroscopic degeneracy of certain energy values in the spectrum is invoked as a possible mechanism for the emergence of extended electronic Bloch wave functions as the dimension changes from one to two

    Traversable wormhole in the deformed Ho\v{r}ava-Lifshitz gravity

    Full text link
    Asymptotically flat wormhole solutions are found in the deformed Ho\v{r}ava-Lifshitz gravity. It turns out that higher curvature terms can not play the role of exotic matters which are crucial to form a traversable wormhole, and external exotic sources are still needed. In particular, the exotic matter behaves like phantom energy if Kehagias-Sfetsos vacuum is considered outside the wormhole. Interestingly, the spherically symmetric setting makes the matter and the higher curvature contribution satisfy four-dimensional conservation of energy in the covariant form.Comment: 13 pages, 2 figures, version published in Phys. Rev.

    Magnetic spectrum of trigonally warped bilayer graphene - semiclassical analysis, zero modes, and topological winding numbers

    Full text link
    We investigate the fine structure in the energy spectrum of bilayer graphene in the presence of various stacking defaults, such as a translational or rotational mismatch. This fine structure consists of four Dirac points that move away from their original positions as a consequence of the mismatch and eventually merge in various manners. The different types of merging are described in terms of topological invariants (winding numbers) that determine the Landau-level spectrum in the presence of a magnetic field as well as the degeneracy of the levels. The Landau-level spectrum is, within a wide parameter range, well described by a semiclassical treatment that makes use of topological winding numbers. However, the latter need to be redefined at zero energy in the high-magnetic-field limit as well as in the vicinity of saddle points in the zero-field dispersion relation.Comment: 17 pages, 16 figures; published version with enhanced discussion of experimental finding

    Topological phase transitions in ultra-cold Fermi superfluids: the evolution from BCS to BEC under artificial spin-orbit fields

    Full text link
    We discuss topological phase transitions in ultra-cold Fermi superfluids induced by interactions and artificial spin orbit fields. We construct the phase diagram for population imbalanced systems at zero and finite temperatures, and analyze spectroscopic and thermodynamic properties to characterize various phase transitions. For balanced systems, the evolution from BCS to BEC superfluids in the presence of spin-orbit effects is only a crossover as the system remains fully gapped, even though a triplet component of the order parameter emerges. However, for imbalanced populations, spin-orbit fields induce a triplet component in the order parameter that produces nodes in the quasiparticle excitation spectrum leading to bulk topological phase transitions of the Lifshitz type. Additionally a fully gapped phase exists, where a crossover from indirect to direct gap occurs, but a topological transition to a gapped phase possessing Majorana fermions edge states does not occur.Comment: With no change in text, the labels in the figures are modifie

    Matter Bounce in Horava-Lifshitz Cosmology

    Full text link
    Horava-Lifshitz gravity, a recent proposal for a UV-complete renormalizable gravity theory, may lead to a bouncing cosmology. In this note we argue that Horava-Lifshitz cosmology may yield a concrete realization of the matter bounce scenario, and thus give rise to an alternative to inflation for producing a scale-invariant spectrum of cosmological perturbations. In this scenario, quantum vacuum fluctuations exit the Hubble radius in the pre-bounce phase and the spectrum is transformed into a scale-invariant one on super-Hubble scales before the bounce because the long wavelength modes undergo squeezing of their wave-functions for a longer period of time than shorter wavelength modes. The scale-invariance of the spectrum of curvature fluctuations is preserved during and after the bounce. A distinctive prediction of this scenario is the amplitude and shape of the bispectrum.Comment: 6 pages, 1 figure, a couple of minor wording change

    The Boson Peak and its Relation with Acoustic Attenuation in Glasses

    Full text link
    Experimental results on the density of states and on the acoustic modes of glasses in the THz region are compared to the predictions of two categories of models. A recent one, solely based on an elastic instability, does not account for most observations. Good agreement without adjustable parameters is obtained with models including the existence of non-acoustic vibrational modes at THz frequency, providing in many cases a comprehensive picture for a range of glass anomalies.Comment: 4 pages, 3 figures, Physical Review Letters in pres

    Symmetry of Magnetically Ordered Quasicrystals

    Get PDF
    The notion of magnetic symmetry is reexamined in light of the recent observation of long range magnetic order in icosahedral quasicrystals [Charrier et al., Phys. Rev. Lett. 78, 4637 (1997)]. The relation between the symmetry of a magnetically-ordered (periodic or quasiperiodic) crystal, given in terms of a ``spin space group,'' and its neutron diffraction diagram is established. In doing so, an outline of a symmetry classification scheme for magnetically ordered quasiperiodic crystals is provided. Predictions are given for the expected diffraction patterns of magnetically ordered icosahedral crystals, provided their symmetry is well described by icosahedral spin space groups.Comment: 5 pages. Accepted for publication in Phys. Rev. Letter

    Homoclinic orbits and chaos in a pair of parametrically-driven coupled nonlinear resonators

    Full text link
    We study the dynamics of a pair of parametrically-driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical and nanoelectromechanical systems (MEMS & NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by Kovacic and Wiggins [Physica D, 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Shilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Shilnikov orbits are confirmed numerically

    QCD Splitting/Joining Functions at Finite Temperature in the Deep LPM Regime

    Full text link
    There exist full leading-order-in-alpha_s numerical calculations of the rates for massless quarks and gluons to split and join in the background of a quark-gluon plasma through hard, nearly collinear bremsstrahlung and inverse bremsstrahlung. In the limit of partons with very high energy E, where the physics is dominated by the Landau-Pomeranchuk-Migdal (LPM) effect, there are also analytic leading-log calculations of these rates, where the logarithm is ln(E/T). We extend those analytic calculations to next-to-leading-log order. We find agreement with the full result to within roughly 20% for E(less) >~ 10 T, where E(less) is the energy of the least energetic parton in the splitting/joining process. We also discuss how to account for the running of the coupling constant in the case that E/T is very large. Our results are also applicable to isotropic non-equilibrium plasmas if the plasma does not change significantly over the formation time associated with particle splitting.Comment: 20 pages, 6 figures. Changes from v3: Typos fixed in the subscripts of various Casimir factor

    Unconventional strongly interacting Bose-Einstein condensates in optical lattices

    Full text link
    Feschbach resonances in a non-s-wave channel of two-component bosonic mixtures can induce atomic Bose Einstein condensates with a non-zero orbital momentum in the optical lattice, if one component is in the Mott insulator state and the other is not. Such non-s-wave condensates break the symmetry of the lattice and, in some cases, time-reversal symmetry. They can be revealed in specific absorption imaging patterns.Comment: Replaced with revised version. References are adde
    • …
    corecore