45 research outputs found

    Extinction time of logistic branching processes in a Brownian environment

    Get PDF
    In this paper, we study the extinction time of logistic branching processes which are perturbed by an independent random environment driven by a Brownian motion. Our arguments use a Lamperti-type representation which is interesting on its own right and provides a one to one correspondence between the latter family of processes and the family of Feller diffusions which are perturbed by an independent spectrally positive LĂ©vy process. When the independent random perturbation (of the Feller diffusion) is driven by a subordinator then the logistic branching processes in a Brownian environment converges to a specified distribution; otherwise, it becomes extinct a.s. In the latter scenario, and following a similar approach to [Lambert, Ann. Appl. Probab, 2005], we provide the expectation and the Laplace transform of the absorption time, as a functional of the solution to a Ricatti differential equation. In particular, the latter characterises the law of the process coming down from infinity

    Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system

    Get PDF
    International audienceTo describe population dynamics, it is crucial to take into account jointly evolution mechanisms and spatial motion. However, the models which include these both aspects, are not still well-understood. Can we extend the existing results on type structured populations, to models of populations structured by type and space, considering diffusion and nonlocal competition between individuals? We study a nonlocal competitive Lotka-Volterra type system, describing a spatially structured population which can be either monomorphic or dimorphic. Considering spatial diffusion, intrinsic death and birth rates, together with death rates due to intraspecific and interspecific competition between the individuals, leading to some integral terms, we analyze the long time behavior of the solutions. We first prove existence of steady states and next determine the long time limits, depending on the competition rates and the principal eigenvalues of some operators, corresponding somehow to the strength of traits. Numerical computations illustrate that the introduction of a new mutant population can lead to the long time evolution of the spatial niche

    Extinction and coming down from infinity of CB-processes with competition in a LĂ©vy environment

    Get PDF
    In this note, we are interested on the event of extinction and the property of coming down from infinity of continuous state branching (or CB for short) processes with competition in a LĂ©vy environment whose branching mechanism satisfies the so-called Grey's condition. In particular, we deduce, under the assumption that the LĂ©vy environment does not drift towards infinity, that for any starting point the process becomes extinct in finite time a.s. Moreover if we impose an integrability condition on the competition mechanism, then the process comes down from infinity regardless the long term behaviour of the environment

    Analyses probabilistes et déterministes pour l'évolution : influence d'une structure spatiale et d'une préférence sexuelle

    No full text
    We study the spatial and evolutionary dynamics of a population by using probabilistic and deterministic tools. In the first part of this thesis, we are concerned with the influence of a heterogeneous environment on the evolution of species. The population is modeled by an individual-based process with some interactions and which describes the birth, the death, the mutation and the spatial diffusion of each individual. The rates of those events depend on the characteristics of the individuals : their phenotypic trait and their spatial location. First, we study the system of partial differential equations that describes the spatial and demographic dynamics of a population composed of two traits in a large population limit. We characterize precisely the conditions of extinction and long time survival for this population. Secondly, we study the initial individual-based model under two asymptotic: large population and rare mutations such as demographic and mutational timescales are separated. Thus, when a mutant appears, the resident population has reached its demographic balance. We characterize the survival probability of the population descended from this mutant. Then, by studyingthe process in the mutational scale, we prove that the microscopic process converges to a jump process which describes the successive fixations of the most advantaged traits and the spatial distribution of populations carrying these traits. We then extend the model to introduce mutualistic interactions between two species. We study this model in a limit of large population. We also give numerical results and a detailed biological behavior analysis around two issues: the co-evolution of phenotypic and spatial niches of mutualistic species and the invasion dynamics of a homogeneous space by these species. In the second part of this thesis, we develop a probabilistic model to study the effect of the sexual preference on the speciation. Here, the population is structured on two patches and the individuals, characterized by a trait, are ecologically and demographically similar and differ only in their sexual preferences: two individuals of the same trait are more likely to reproduce than two individuals of distinct traits. We show that in the absence of any other ecological differences, the sexual preferences lead to reproductive isolation between the two patches.Cette thèse porte sur l'étude des dynamiques spatiales et évolutives d'une population à l'aide d'outils probabilistes et déterministes. Dans la première partie, nous cherchons à comprendre l'effet de l'hétérogénéité de l'environnement sur l'évolution des espèces. La population considérée est modélisée par un processus individu-centré avec interactions qui décrit les événements de naissances, morts, mutations et diffusions spatiales de chaque individu. Les taux des événements dépendent des caractéristiques des individus : traits phénotypes et positions spatiales. Dans un premier temps, nous étudions le système d'équations aux dérivées partielles qui décrit la dynamique spatiale et démographique d'une population composée de deux traits dans une limite grande population. Nous caractérisons précisément les conditions d'extinction et de survie en temps long de cette population. Dans un deuxième temps, nous étudions le modèle individuel initial sous deux asymptotiques : grande population et mutations rares de telle sorte que les échelles de temps démographiques et mutationnelles sont séparées. Ainsi, lorsqu'un mutant apparaît, la population résidente est à l'équilibre démographique. Nous cherchons alors à caractériser la probabilité de survie de la population issue de ce mutant. Puis, en étudiantle processus dans l'échelle des mutations, nous prouvons que le processus individu-centré converge vers un processus de sauts qui décrit les fixations successives des traits les plus avantagés ainsi que la répartition spatiale des populations portant ces traits. Nous généralisons ensuite le modèle pour introduire des interactions de type mutualiste entre deux espèces. Nous étudions ce modèle dans une limite de grande population. Nous donnons par ailleurs des résultats numériques et une analyse biologique détaillée des comportements obtenus autour de deux problématiques : la coévolution de niches spatiales et phénotypiques d'espèces en interaction mutualiste et les dynamiques d'invasions d'un espace homogène par des espèces mutualistes. Dans la deuxième partie de cette thèse, nous développons un modèle probabiliste pour étudier finement l'effet d'une préférence sexuelle sur la spéciation. La population est ici structurée sur deux patchs et les individus, caractérisés par un trait, sont écologiquement et démographiquement équivalents et se distinguent uniquement par leur préférence sexuelle: deux individus de même trait ont plus de chance de se reproduire que deux individus de traits distincts. Nous montrons qu'en l'absence de toute autre différence écologique, la préférence sexuelle mène à un isolement reproductif entre les deux patchs

    A Stochastic Model for Reproductive Isolation Under Asymmetrical Mating Preferences

    No full text

    Site frequency spectrum of a rescued population under rare resistant mutations

    No full text
    The aim of this article is to study the impact of resistance acquisition on the distribution of neutral mutations in a cell population under therapeutic pressure. The cell population is modeled by a bi-type branching process. Initially, the cells all carry type 0, associated with a negative growth rate. Mutations towards type 1 are assumed to be rare and random, and lead to the survival of cells under treatment, i.e. type 1 is associated with a positive growth rate, and thus models the acquisition of a resistance. Cells also carry neutral mutations, acquired at birth and accumulated by inheritance, that do not affect their type. We describe the expectation of the "Site Frequency Spectrum" (SFS), which is an index of neutral mutation distribution in a population, under the asymptotic of rare events of resistance acquisition and of large initial population. Precisely, we give asymptotically-equivalent expressions of the expected number of neutral mutations shared by both a small and a large number of cells. To identify the influence of relatives on the SFS, our work also lead us to study in detail subcritical binary Galton-Watson trees, where each leaf is marked with a small probability. As a by-product of this study, we thus provide the law of the generation of a randomly chosen leaf in such a Galton-Watson tree conditioned on the number of marks

    Site frequency spectrum of a rescued population under rare resistant mutations

    No full text
    The aim of this article is to study the impact of resistance acquisition on the distribution of neutral mutations in a cell population under therapeutic pressure. The cell population is modeled by a bi-type branching process. Initially, the cells all carry type 0, associated with a negative growth rate. Mutations towards type 1 are assumed to be rare and random, and lead to the survival of cells under treatment, i.e. type 1 is associated with a positive growth rate, and thus models the acquisition of a resistance. Cells also carry neutral mutations, acquired at birth and accumulated by inheritance, that do not affect their type. We describe the expectation of the "Site Frequency Spectrum" (SFS), which is an index of neutral mutation distribution in a population, under the asymptotic of rare events of resistance acquisition and of large initial population. Precisely, we give asymptotically-equivalent expressions of the expected number of neutral mutations shared by both a small and a large number of cells. To identify the influence of relatives on the SFS, our work also lead us to study in detail subcritical binary Galton-Watson trees, where each leaf is marked with a small probability. As a by-product of this study, we thus provide the law of the generation of a randomly chosen leaf in such a Galton-Watson tree conditioned on the number of marks

    Extinction time of logistic branching processes in a Brownian environment

    Get PDF
    International audiencen this paper, we study the extinction time of logistic branching processes which are perturbed by an independent random environment driven by a Brownian motion. Our arguments use a Lamperti-type representation which is interesting on its own right and provides a one to one correspondence between the latter family of processes and the family of Feller diffusions which are perturbed by an independent spectrally positive LĂ©vy process. When the independent random perturbation (of the Feller diffusion) is driven by a subordinator then the logistic branching processes in a Brownian environment converges to a specified distribution; otherwise, it becomes extinct a.s. In the latter scenario, and following a similar approach to Lambert (2005), we provide the expectation and the Laplace transform of the absorption time as a functional of the solution to a Ricatti differential equation. In particular, the latter characterises the law of the process coming down from infinity
    corecore