118 research outputs found

    Electron transport properties in magnetic tunnel junctions with epitaxial NiFe (111) ferromagnetic bottom electrodes

    Get PDF
    科研費報告書収録論文(課題番号:13305001・基盤研究(A)(2) ・H13~H15/研究代表者:宮崎, 照宣/高品位微小トンネル接合へのスピン注入

    The Polarizable Charge Equilibration Model for Transition-Metal Elements

    Get PDF
    The polarizable charge equilibration (PQEq) method was developed to provide a simple but accurate description of the electrostatic interactions and polarization effects in materials. Previously, we optimized four parameters per element for the main group elements. Here, we extend this optimization to the 24 d-block transition-metal (TM) elements, columns 4–11 of the periodic table including Ti–Cu, Zr–Ag, and Hf–Au. We validate the PQEq description for these elements by comparing to interaction energies computed by quantum mechanics (QM). Because many materials applications involving TM are for oxides and other compounds that formally oxidize the metal, we consider a variety of oxidation states in 24 different molecular clusters. In each case, we compare interaction energies and induced fields from QM and PQEq along various directions. We find that the original χ and J parameters (electronegativity and hardness) related to the ionization of the atom remain valid; however, we find that the atomic radius parameter needs to be close to the experimental ionic radii of the transition metals. This leads to a much higher spring constant to describe the atomic polarizability. We find that these optimized parameters for PQEq provide accurate interaction energies compared to QM with charge distributions that depend in a reasonable way on the coordination number and oxidation states of the transition metals. We expect that this description of the electrostatic interactions for TM will be useful in molecular dynamics simulations of inorganic and organometallic materials

    Theoretical study of the ammonia nitridation rate on an Fe (100) surface: A combined density functional theory and kinetic Monte Carlo study

    Get PDF
    Ammonia (NH[subscript 3]) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (E[subscript b]) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (E[subscript b]) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH[subscript 3] nitridation rate on the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH[subscript 3] nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH[subscript 3] nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH[subscript 3] nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.Korea (South). Ministry of Education, Science and Technology (MEST) (National Research Foundation of Korea. 2011-0028612

    Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles

    Get PDF
    We have used molecular dynamics simulations to investigate interaction of H2 molecules on the exterior surfaces of carbon nanotubes (CNTs): single and bundle types. At 80 K and 10 MPa, it is found that charge transfer occurs from a low curvature region to a high curvature region of the deformed CNT bundle, which develops charge polarization only on the deformed structure. The long-range electrostatic interactions of polarized charges on the deformed CNT bundle with hydrogen molecules are observed to induce a high local-ordering of H2 gas that results in hydrogen liquefaction. Our predicted heat of hydrogen liquefaction on the CNT bundle is 97.6 kcal kg^-1. On the other hand, hydrogen liquefaction is not observed in the CNT of a single type. This is because charge polarization is not developed on the single CNT as it is symmetrically deformed under the same pressure. Consequently, the hydrogen storage capacity on the CNT bundle is much higher due to liquefaction than that on the single CNT. Additionally, our results indicate that it would also be possible to liquefy H2 gas on a more strongly polarized CNT bundle at temperatures higher than 80 K

    The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development

    Get PDF
    We present a new reactive force field ReaxFFHBN derived to accurately model large molecular and condensed phase systems of H, B, and N atoms. ReaxFFHBN has been tested against quantum calculation data for B–H, B–B, and B–N bond dissociations and for H–B–H, B–N–B, and N–B–N bond angle strain energies of various molecular clusters. The accuracy of the developed ReaxFFHBN for B–N–H systems is also tested for (i) H–B and H–B bond energies as a function of out of plane in H–B(NH2)3 and H–N(BH2)3, respectively, (ii) the reaction energy for the B3N3H6+H2-->B3N3H8, and (iii) crystal properties such as lattice parameters and equations of states for the hexagonal type (h-BN) with a graphite structure and for the cubic type (c-BN) with a zinc-blende structure. For all these systems, ReaxFFHBN gives reliable results consistent with those from quantum calculations as it describes well bond breaking and formation in chemical processes and physical properties. Consequently, the molecular-dynamics simulation based on ReaxFFHBN is expected to give a good description of large systems (>2000 atoms even on the one-CPU machine) with hydrogen, boron, and nitrogen atoms

    Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption

    Get PDF
    Collision and adsorption of hydrogen with high incident kinetic energies on a single-walled boron nitride (BN) nanotube have been investigated. Molecular-dynamics (MD) simulations indicate that at incident energies below 14 eV hydrogen bounces off the BN nanotube wall. On the other hand, at incident energies between 14 and 22 eV each hydrogen molecule is dissociated at the exterior wall to form two hydrogen atoms, but only one of them goes through the wall. However, at the incident energies between 23 and 26 eV all of the hydrogen atoms dissociated at the exterior wall are found to be capable of going inside the nanotube and then to recombine to form hydrogen molecules inside the nanotube. Consequently, it is determined that hydrogen should have the incident energy >22 eV to go inside the nanotube. On the other hand, we find that the collisions using the incident energies >26 eV could result in damaging the nanotube structures. In addition our MD simulations find that hydrogen atoms dissociated at the wall cannot bind to either boron or nitrogen atoms in the interior wall of the nanotube

    Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells.

    Get PDF
    Manipulation of grain boundaries in polycrystalline perovskite is an essential consideration for both the optoelectronic properties and environmental stability of solar cells as the solution-processing of perovskite films inevitably introduces many defects at grain boundaries. Though small molecule-based additives have proven to be effective defect passivating agents, their high volatility and diffusivity cannot render perovskite films robust enough against harsh environments. Here we suggest design rules for effective molecules by considering their molecular structure. From these, we introduce a strategy to form macromolecular intermediate phases using long chain polymers, which leads to the formation of a polymer-perovskite composite cross-linker. The cross-linker functions to bridge the perovskite grains, minimizing grain-to-grain electrical decoupling and yielding excellent environmental stability against moisture, light, and heat, which has not been attainable with small molecule defect passivating agents. Consequently, all photovoltaic parameters are significantly enhanced in the solar cells and the devices also show excellent stability

    Nanopores of carbon nanotubes as practical hydrogen storage media

    Get PDF
    We report on hydrogen desorption mechanisms in the nanopores of multiwalled carbon nanotubes (MWCNTs). The as-grown MWCNTs show continuous walls that do not provide sites for hydrogen storage under ambient conditions. However, after treating the nanotubes with oxygen plasma to create nanopores in the MWCNTs, we observed the appearance of a new hydrogen desorption peak in the 300–350 K range. Furthermore, the calculations of density functional theory and molecular dynamics simulations confirmed that this peak could be attributed to the hydrogen that is physically adsorbed inside nanopores whose diameter is approximately 1 nm. Thus, we demonstrated that 1 nm nanopores in MWCNTs offer a promising route to hydrogen storage media for onboard practical applications

    The Polarizable Charge Equilibration Model for Transition-Metal Elements

    Get PDF
    The polarizable charge equilibration (PQEq) method was developed to provide a simple but accurate description of the electrostatic interactions and polarization effects in materials. Previously, we optimized four parameters per element for the main group elements. Here, we extend this optimization to the 24 d-block transition-metal (TM) elements, columns 4–11 of the periodic table including Ti–Cu, Zr–Ag, and Hf–Au. We validate the PQEq description for these elements by comparing to interaction energies computed by quantum mechanics (QM). Because many materials applications involving TM are for oxides and other compounds that formally oxidize the metal, we consider a variety of oxidation states in 24 different molecular clusters. In each case, we compare interaction energies and induced fields from QM and PQEq along various directions. We find that the original χ and J parameters (electronegativity and hardness) related to the ionization of the atom remain valid; however, we find that the atomic radius parameter needs to be close to the experimental ionic radii of the transition metals. This leads to a much higher spring constant to describe the atomic polarizability. We find that these optimized parameters for PQEq provide accurate interaction energies compared to QM with charge distributions that depend in a reasonable way on the coordination number and oxidation states of the transition metals. We expect that this description of the electrostatic interactions for TM will be useful in molecular dynamics simulations of inorganic and organometallic materials
    corecore