62 research outputs found

    A Col9a1 enhancer element activated by two interdependent SOX9 dimers

    Get PDF
    The transcription factor SOX9 plays a critical role in chondrogenesis as well as in sex determination. Previous work has suggested that SOX9 functions as a DNA-dependent dimer when it activates genes involved in chondrogenesis, but functions as a monomer to activate genes involved in sex determination. We present evidence herein for a third binding configuration through which SOX9 can activate transcription. We have identified four separate SOX consensus sequences in a COL9A1 collagen gene enhancer. The sites are arranged as two pairs, and each pair is similar to previously discovered dimeric SOX9 binding sites. Increasing the spacing between the pairs of sites eliminated enhancer activity in chondrocytic cells, as did the mutation of any one of the four sites. The COL9A1 enhancer is ordinarily inactive in 10T1/2 cells, but cotransfection with a SOX9 expression plasmid was sufficient to activate the enhancer, and mutation of any one of the four sites reduced responsiveness to SOX9 overexpression. These results suggest a novel mechanism for transcriptional activation by SOX9, in which two SOX9 dimers that are bound at the two pairs of sites are required to interact with one another, either directly or indirectly, in order to produce a functional transcriptional activation complex

    Publically Funded Recreation Facilities: Obesogenic Environments for Children and Families?

    Get PDF
    Increasing healthy food options in public venues, including recreational facilities, is a health priority. The purpose of this study was to describe the public recreation food environment in British Columbia, Canada using a sequential explanatory mixed methods design. Facility audits assessed policy, programs, vending, concessions, fundraising, staff meetings and events. Focus groups addressed context and issues related to action. Eighty-eighty percent of facilities had no policy governing food sold or provided for children/youth programs. Sixty-eight percent of vending snacks were chocolate bars and chips while 57% of beverages were sugar sweetened. User group fundraisers held at the recreation facilities also sold ‘unhealthy’ foods. Forty-two percent of recreation facilities reported providing user-pay programs that educated the public about healthy eating. Contracts, economics, lack of resources and knowledge and motivation of staff and patrons were barriers to change. Recreation food environments were obesogenic but stakeholders were interested in change. Technical support, resources and education are needed

    Nuclear variants of bone morphogenetic proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone morphogenetic proteins (BMPs) contribute to many different aspects of development including mesoderm formation, heart development, neurogenesis, skeletal development, and axis formation. They have previously been recognized only as secreted growth factors, but the present study detected Bmp2, Bmp4, and Gdf5/CDMP1 in the nuclei of cultured cells using immunocytochemistry and immunoblotting of nuclear extracts.</p> <p>Results</p> <p>In all three proteins, a bipartite nuclear localization signal (NLS) was found to overlap the site at which the proproteins are cleaved to release the mature growth factors from the propeptides. Mutational analyses indicated that the nuclear variants of these three proteins are produced by initiating translation from downstream alternative start codons. The resulting proteins lack N-terminal signal peptides and are therefore translated in the cytoplasm rather than the endoplasmic reticulum, thus avoiding proteolytic processing in the secretory pathway. Instead, the uncleaved proteins (designated nBmp2, nBmp4, and nGdf5) containing the intact NLSs are translocated to the nucleus. Immunostaining of endogenous nBmp2 in cultured cells demonstrated that the amount of nBmp2 as well as its nuclear/cytoplasmic distribution differs between cells that are in M-phase versus other phases of the cell cycle.</p> <p>Conclusions</p> <p>The observation that nBmp2 localization varies throughout the cell cycle, as well as the conservation of a nuclear localization mechanism among three different BMP family members, suggests that these novel nuclear variants of BMP family proteins play an important functional role in the cell.</p

    Whole-body MRI compared with standard pathways for staging metastatic disease in lung and colorectal cancer: the Streamline diagnostic accuracy studies.

    Get PDF
    BACKGROUND: Whole-body magnetic resonance imaging is advocated as an alternative to standard pathways for staging cancer. OBJECTIVES: The objectives were to compare diagnostic accuracy, efficiency, patient acceptability, observer variability and cost-effectiveness of whole-body magnetic resonance imaging and standard pathways in staging newly diagnosed non-small-cell lung cancer (Streamline L) and colorectal cancer (Streamline C). DESIGN: The design was a prospective multicentre cohort study. SETTING: The setting was 16 NHS hospitals. PARTICIPANTS: Consecutive patients aged ≥ 18 years with histologically proven or suspected colorectal (Streamline C) or non-small-cell lung cancer (Streamline L). INTERVENTIONS: Whole-body magnetic resonance imaging. Standard staging investigations (e.g. computed tomography and positron emission tomography-computed tomography). REFERENCE STANDARD: Consensus panel decision using 12-month follow-up data. MAIN OUTCOME MEASURES: The primary outcome was per-patient sensitivity difference between whole-body magnetic resonance imaging and standard staging pathways for metastasis. Secondary outcomes included differences in specificity, the nature of the first major treatment decision, time and number of tests to complete staging, patient experience and cost-effectiveness. RESULTS: Streamline C - 299 participants were included. Per-patient sensitivity for metastatic disease was 67% (95% confidence interval 56% to 78%) and 63% (95% confidence interval 51% to 74%) for whole-body magnetic resonance imaging and standard pathways, respectively, a difference in sensitivity of 4% (95% confidence interval -5% to 13%; p = 0.51). Specificity was 95% (95% confidence interval 92% to 97%) and 93% (95% confidence interval 90% to 96%) respectively, a difference of 2% (95% confidence interval -2% to 6%). Pathway treatment decisions agreed with the multidisciplinary team treatment decision in 96% and 95% of cases, respectively, a difference of 1% (95% confidence interval -2% to 4%). Time for staging was 8 days (95% confidence interval 6 to 9 days) and 13 days (95% confidence interval 11 to 15 days) for whole-body magnetic resonance imaging and standard pathways, respectively, a difference of 5 days (95% confidence interval 3 to 7 days). The whole-body magnetic resonance imaging pathway was cheaper than the standard staging pathway: £216 (95% confidence interval £211 to £221) versus £285 (95% confidence interval £260 to £310). Streamline L - 187 participants were included. Per-patient sensitivity for metastatic disease was 50% (95% confidence interval 37% to 63%) and 54% (95% confidence interval 41% to 67%) for whole-body magnetic resonance imaging and standard pathways, respectively, a difference in sensitivity of 4% (95% confidence interval -7% to 15%; p = 0.73). Specificity was 93% (95% confidence interval 88% to 96%) and 95% (95% confidence interval 91% to 98%), respectively, a difference of 2% (95% confidence interval -2% to 7%). Pathway treatment decisions agreed with the multidisciplinary team treatment decision in 98% and 99% of cases, respectively, a difference of 1% (95% confidence interval -2% to 4%). Time for staging was 13 days (95% confidence interval 12 to 14 days) and 19 days (95% confidence interval 17 to 21 days) for whole-body magnetic resonance imaging and standard pathways, respectively, a difference of 6 days (95% confidence interval 4 to 8 days). The whole-body magnetic resonance imaging pathway was cheaper than the standard staging pathway: £317 (95% confidence interval £273 to £361) versus £620 (95% confidence interval £574 to £666). Participants generally found whole-body magnetic resonance imaging more burdensome than standard imaging but most participants preferred the whole-body magnetic resonance imaging staging pathway if it reduced time to staging and/or number of tests. LIMITATIONS: Whole-body magnetic resonance imaging was interpreted by practitioners blinded to other clinical data, which may not fully reflect how it is used in clinical practice. CONCLUSIONS: In colorectal and non-small-cell lung cancer, the whole-body magnetic resonance imaging staging pathway has similar accuracy to standard staging pathways, is generally preferred by patients, improves staging efficiency and has lower staging costs. Future work should address the utility of whole-body magnetic resonance imaging for treatment response assessment. TRIAL REGISTRATION: Current Controlled Trials ISRCTN43958015 and ISRCTN50436483. FUNDING: This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 23, No. 66. See the NIHR Journals Library website for further project information

    Criteria for preclinical models of cholangiocarcinoma:scientific and medical relevance

    Get PDF
    Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA

    Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children

    Get PDF
    Gut microbiota has been implicated as a pivotal contributing factor in diet-related obesity; however, its role in development of disease phenotypes in human genetic obesity such as Prader–Willi syndrome (PWS) remains elusive. In this hospitalized intervention trial with PWS (n = 17) and simple obesity (n = 21) children, a diet rich in non-digestible carbohydrates induced significant weight loss and concomitant structural changes of the gut microbiota together with reduction of serum antigen load and alleviation of inflammation. Co-abundance network analysis of 161 prevalent bacterial draft genomes assembled directly from metagenomic datasets showed relative increase of functional genome groups for acetate production from carbohydrates fermentation. NMR-based metabolomic profiling of urine showed diet-induced overall changes of host metabotypes and identified significantly reduced trimethylamine N-oxide and indoxyl sulfate, host-bacteria co-metabolites known to induce metabolic deteriorations. Specific bacterial genomes that were correlated with urine levels of these detrimental co-metabolites were found to encode enzyme genes for production of their precursors by fermentation of choline or tryptophan in the gut. When transplanted into germ-free mice, the pre-intervention gut microbiota induced higher inflammation and larger adipocytes compared with the post-intervention microbiota from the same volunteer. Our multi-omics-based systems analysis indicates a significant etiological contribution of dysbiotic gut microbiota to both genetic and simple obesity in children, implicating a potentially effective target for alleviation

    Cholangiocarcinoma 2020: the next horizon in mechanisms and management

    Get PDF
    [EN] Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non- invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlightedJ.M.B. received EASL Registry Awards 2016 and 2019 (European CCA Registry, ENS-CCA). J.M.B. and M.J.P. were supported by: the Spanish Ministry of Economy and Competitiveness (J.M.B.: FIS PI12/00380, FIS PI15/01132, FIS PI18/01075 and Miguel Servet Programme CON14/00129; M.J.P.: FIS PI14/00399, FIS PI17/00022 and Ramon y Cajal Programme RYC-2015-17755, co-financed by “Fondo Europeo de Desarrollo Regional” (FEDER)); ISCIII CIBERehd; “Diputación Foral de Gipuzkoa” (J.M.B: DFG15/010, DFG16/004), and BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD); the Department of Health of the Basque Country (M.J.P.: 2015111100; J.M.B.: 2017111010), and “Fundación Científica de la Asociación Española Contra el Cancer” (AECC Scientific Foundation) (J.M.B.). J.M.B. and J.W.V. were supported by the European Commission Horizon 2020 programme (ESCALON project 825510). The laboratory of J.B.A. is supported by competitive grants from the Danish Medical Research Council, the Danish Cancer Society, and the Novo Nordisk and A.P. Møller Foundations. J.J.G.M. and R.I.R.M. were supported by the Carlos III Institute of Health, Spain (PI16/00598 and PI18/00428) and were co-financed by the European Regional Development Fund. J.M.B. and J.J.G.M. were supported by the Ministry of Science and Innovation, Spain (SAF2016-75197-R), and the “Asociación Española Contra el Cancer”, Spain (AECC-2017). R.I.R.M. was supported by the “Centro Internacional sobre el Envejecimiento”, Spain (OLD-HEPAMARKER, 0348-CIE-6-E). A.L. received funding from the Christie Charity. M.M. was supported by the Università Politecnica delle Marche, Ancona, Italy (040020_R.SCIENT.A_2018_MARZIONI_M_STRATEGICO_2017). M.S. was supported by the Yale Liver Center Clinical and Translational Core and the Cellular and Molecular Core (DK034989 Silvio O. Conte Digestive Diseases Research Center). C.C. is supported by grants from INSERM, Université de Rennes, INCa, and ITMO Cancer AVIESAN dans le cadre du Plan Cancer (Non-coding RNA in Cancerology: Fundamental to Translational), Ligue Contre le Cancer and Région Bretagne. J.Bruix was supported by grants from Instituto de Salud Carlos III (PI18/00763), AECC (PI044031) and WCR (AICR) 16-0026. A.F. was supported by grants from ISCIII (PI13/01229 and PI18/00542). CIBERehd is funded by the Instituto de Salud Carlos III. V.C., D.M., J. Bridgewater and P.I. are members of the European Reference Network - Hepatological Diseases (ERN RARE-LIVER). J.M.B. is a collaborator of the ERN RARE-LIVER

    α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3

    Get PDF
    Invasive migration in 3D extracellular matrix (ECM) is crucial to cancer metastasis, yet little is known of the molecular mechanisms that drive reorganization of the cytoskeleton as cancer cells disseminate in vivo. 2D Rac-driven lamellipodial migration is well understood, but how these features apply to 3D migration is not clear. We find that lamellipodia-like protrusions and retrograde actin flow are indeed observed in cells moving in 3D ECM. However, Rab-coupling protein (RCP)-driven endocytic recycling of α5β1 integrin enhances invasive migration of cancer cells into fibronectin-rich 3D ECM, driven by RhoA and filopodial spike-based protrusions, not lamellipodia. Furthermore, we show that actin spike protrusions are Arp2/3-independent. Dynamic actin spike assembly in cells invading in vitro and in vivo is regulated by Formin homology-2 domain containing 3 (FHOD3), which is activated by RhoA/ROCK, establishing a novel mechanism through which the RCP–α5β1 pathway reprograms the actin cytoskeleton to promote invasive migration and local invasion in vivo

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore