1,153 research outputs found
A mobility enabled inpatient monitoring system using a ZigBee medical sensor network
This paper presents a ZigBee In-Patient Monitoring system embedded with a new ZigBee mobility management solution. The system enables ZigBee device mobility in a fixed ZigBee network. The usage, the architecture and the mobility framework are discussed in details in the paper. The evaluation shows that the new algorithm offers a good efficiency, resulting in a low management cost. In addition, the system can save lives by providing a panic button and can be used as a location tracking service. A case study focused on the Princes of Wales Hospital in Hong Kong is presented and findings are given. This investigation reveals that the developed mobile solutions offer promising value-added services for many potential ZigBee applications
Population genomic analyses of protected incense trees Aquilaria sinensis reveal the existence of genetically distinct subpopulations
The incense tree Aquilaria sinensis (Thymelaeaceae) can produce agarwood with commercial values and is now under threat from illegal exploitation in Hong Kong, impairing the local population and biodiversity. Together with other species of Aquilaria, it is listed in the CITES Appendix II, which strictly regulates its international trade. To understand the population structure of A. sinensis and to make relevant conservation measures, we have sequenced 346 individuals collected in Hong Kong and southern mainland China. Population genomic analyses including principal component analysis, neighbor-joining tree construction, ADMIXTURE, and hierarchical pairwise-FST analyses suggested that genetically distinct populations are contained in certain areas. Genomic scan analyses further detected single-nucleotide polymorphism (SNP) outliers related to plant defense, including the CYP71BE gene cluster. In addition to the population analyses, we have developed a modified hexadecyltrimethyl-ammonium bromide (CTAB) DNA extraction protocol for obtaining DNA from agarwood samples in this study, and resequencing of DNA extracted from two agarwood samples using this method allows us to successfully map to the sample corresponding localities in the phylogenetic tree. To sum up, this study suggested that there is a genetically distinct subpopulation of incense tree in Hong Kong that would require special conservation measures and established a foundation for future conservation measures
「回首.動情.傳承」長者生命故事計劃
嶺南大學亞太老年學研究中心獲華人永遠墳場管理委員會(「華永會」)資助為期一年的「回首.動情.傳承」長者生命故事計劃(「計劃」)。此計劃旨在讓青年人認識長者生命經驗,學習克服困難與挫折以提升抗逆力,建立正向人生觀。
近年,主流媒體經常批評年輕人的負面人生觀,例如:「躺平主義」、「享樂主義」、「犬儒心態」等,亦不時看到青年人輕生的新聞。我們曾在大學內處理過不少受情緒困擾及企圖自殺的個案,與學生深入交流後,發現他們面對着沉重的學業壓力、財政困難或複雜的家庭關係,內心充滿掙扎不安。
此計劃讓嶺大學生與長者導師進行深度的對談,透過了解長者走過的路、他們經歷過的挫折和教訓,給予年輕人生命的啟示。如果我們以旅遊比喻人生,長者就像環遊世界的資深背包客,即使大家遊覽不同的地點、觀賞過不同的風景,他們總能夠分享一些旅遊的心得,讓新手遊客走少一點冤枉路,或領悟到旅遊的樂趣和意義。長者亦可以藉由敍述人生片段回顧他們生命中的故事,學習接納過去,增加自我認同感。青年人創作生命教育書冊,將長者積極的人生觀傳給年輕一代,並藉此鼓勵其他長者豁達地度過餘年。
我們於2022年初招募嶺南大學學生接受「生命故事敍述」培訓,內容包括:本港的人口老化現象、敍述治療理論、與長者溝通的技巧及模擬實踐練習等,以裝備同學的知識和技巧。本中心再向屯門、元朗區的長者機構發邀請信,誠邀長者擔任生命導師接受訪問。
嶺大安排同學以兩人一組的小隊形式,於2022年6至7月期間前往長者中心、日間護理中心、嶺南大學或長者家中,與十二位長者進行深入訪談。訪談結束後,同學根據訪談的內容,為長者書寫他們獨特的生命故事。例如在人離鄉賤的異國環境下,努力打拼事業的Alfred;堅持不懈持續進修的淑芹和馮春林;即使沒機會求學,仍憑一雙巧手闖出一片天的譚惠;在文化大革命的漩渦中,憑着熱忱而改變命運的蘭英;還有為家人無私奉獻的鳳群、歐婆婆、雅芳及細女;離鄉別井勇闖異地的阿美和阿水;即使被家人賣去做「妹仔」,仍能以「阿Q精神」面對的諒餘。
為保障長者的私隱權益,本書內所有刊登之故事皆經過受訪者或社工審閱,部份受訪者選擇以化名的形式來分享自己的故事,我們亦移除了部份敏感的個人資料。https://commons.ln.edu.hk/apias_guide/1008/thumbnail.jp
Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation
<p>Abstract</p> <p>Background</p> <p>Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells.</p> <p>Methods</p> <p>The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses.</p> <p>Results</p> <p>Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in <it>in vitro </it>assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic targets, may reflect a positive mediation of ovarian cancer growth.</p> <p>Conclusion</p> <p>Overall, the present study elucidates the extensive transcriptomic changes of ovarian cancer cells in response to LH receptor activation, which provides a comprehensive and objective assessment for determining new cancer therapies and potential serum markers, of which over 100 are suggested.</p
Predictors of Chemosensitivity in Triple Negative Breast Cancer: An Integrated Genomic Analysis
Background: Triple negative breast cancer (TNBC) is a highly heterogeneous and aggressive disease, and although no effective targeted therapies are available to date, about one-third of patients with TNBC achieve pathologic complete response (pCR) from standard-of-care anthracycline/taxane (ACT) chemotherapy. The heterogeneity of these tumors, however, has hindered the discovery of effective biomarkers to identify such patients. Methods and Findings: We performed whole exome sequencing on 29 TNBC cases from the MD Anderson Cancer Center (MDACC) selected because they had either pCR (n = 18) or extensive residual disease (n = 11) after neoadjuvant chemotherapy, with cases from The Cancer Genome Atlas (TCGA; n = 144) and METABRIC (n = 278) cohorts serving as validation cohorts. Our analysis revealed that mutations in the AR- and FOXA1-regulated networks, in which BRCA1 plays a key role, are associated with significantly higher sensitivity to ACT chemotherapy in the MDACC cohort (pCR rate of 94.1% compared to 16.6% in tumors without mutations in AR/FOXA1 pathway, adjusted p = 0.02) and significantly better survival outcome in the TCGA TNBC cohort (log-rank test, p = 0.05). Combined analysis of DNA sequencing, DNA methylation, and RNA sequencing identified tumors of a distinct BRCA-deficient (BRCA-D) TNBC subtype characterized by low levels of wild-type BRCA1/2 expression. Patients with functionally BRCA-D tumors had significantly better survival with standard-of-care chemotherapy than patients whose tumors were not BRCA-D (log-rank test, p = 0.021), and they had significantly higher mutation burden (p < 0.001) and presented clonal neoantigens that were associated with increased immune cell activity. A transcriptional signature of BRCA-D TNBC tumors was independently validated to be significantly associated with improved survival in the METABRIC dataset (log-rank test, p = 0.009). As a retrospective study, limitations include the small size and potential selection bias in the discovery cohort. Conclusions: The comprehensive molecular analysis presented in this study directly links BRCA deficiency with increased clonal mutation burden and significantly enhanced chemosensitivity in TNBC and suggests that functional RNA-based BRCA deficiency needs to be further examined in TNBC. © 2016 Jiang et al
Identification of a Gene Regulatory Network Necessary for the Initiation of Oligodendrocyte Differentiation
Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes requires extensive changes in gene expression, which are partly mediated by post-translational modifications of nucleosomal histones. An essential modification for oligodendrocyte differentiation is the removal of acetyl groups from lysine residues which is catalyzed by histone deacetylases (HDACs). The transcriptional targets of HDAC activity within OPCs however, have remained elusive and have been identified in this study by interrogating the oligodendrocyte transcriptome. Using a novel algorithm that allows clustering of gene transcripts according to expression kinetics and expression levels, we defined major waves of co-regulated genes. The initial overall decrease in gene expression was followed by the up-regulation of genes involved in lipid metabolism and myelination. Functional annotation of the down-regulated gene clusters identified transcripts involved in cell cycle regulation, transcription, and RNA processing. To define whether these genes were the targets of HDAC activity, we cultured rat OPCs in the presence of trichostatin A (TSA), an HDAC inhibitor previously shown to inhibit oligodendrocyte differentiation. By overlaying the defined oligodendrocyte transcriptome with the list of ‘TSA sensitive’ genes, we determined that a high percentage of ‘TSA sensitive’ genes are part of a normal program of oligodendrocyte differentiation. TSA treatment increased the expression of genes whose down-regulation occurs very early after induction of OPC differentiation, but did not affect the expression of genes with a slower kinetic. Among the increased ‘TSA sensitive’ genes we detected several transcription factors including Id2, Egr1, and Sox11, whose down-regulation is critical for OPC differentiation. Thus, HDAC target genes include clusters of co-regulated genes involved in transcriptional repression. These results support a de-repression model of oligodendrocyte lineage progression that relies on the concurrent down-regulation of several inhibitors of differentiation
Six Novel Susceptibility Loci for Early-Onset Androgenetic Alopecia and Their Unexpected Association with Common Diseases
Androgenetic alopecia (AGA) is a highly heritable condition and the most common form of hair loss in humans. Susceptibility loci have been described on the X chromosome and chromosome 20, but these loci explain a minority of its heritable variance. We conducted a large-scale meta-analysis of seven genome-wide association studies for early-onset AGA in 12,806 individuals of European ancestry. While replicating the two AGA loci on the X chromosome and chromosome 20, six novel susceptibility loci reached genome-wide significance (p = 2.62×10−9–1.01×10−12). Unexpectedly, we identified a risk allele at 17q21.31 that was recently associated with Parkinson's disease (PD) at a genome-wide significant level. We then tested the association between early-onset AGA and the risk of PD in a cross-sectional analysis of 568 PD cases and 7,664 controls. Early-onset AGA cases had significantly increased odds of subsequent PD (OR = 1.28, 95% confidence interval: 1.06–1.55, p = 8.9×10−3). Further, the AGA susceptibility alleles at the 17q21.31 locus are on the H1 haplotype, which is under negative selection in Europeans and has been linked to decreased fertility. Combining the risk alleles of six novel and two established susceptibility loci, we created a genotype risk score and tested its association with AGA in an additional sample. Individuals in the highest risk quartile of a genotype score had an approximately six-fold increased risk of early-onset AGA [odds ratio (OR) = 5.78, p = 1.4×10−88]. Our results highlight unexpected associations between early-onset AGA, Parkinson's disease, and decreased fertility, providing important insights into the pathophysiology of these conditions
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV
Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.
- …