2 research outputs found

    Remembering Words in Context as Predicted by an Associative Read-Out Model

    Get PDF
    Interactive activation models (IAMs) simulate orthographic and phonological processes in implicit memory tasks, but they neither account for associative relations between words nor explicit memory performance. To overcome both limitations, we introduce the associative read-out model (AROM), an IAM extended by an associative layer implementing long-term associations between words. According to Hebbian learning, two words were defined as “associated” if they co-occurred significantly often in the sentences of a large corpus. In a study-test task, a greater amount of associated items in the stimulus set increased the “yes” response rates of non-learned and learned words. To model test-phase performance, the associative layer is initialized with greater activation for learned than for non-learned items. Because IAMs scale inhibitory activation changes by the initial activation, learned items gain a greater signal variability than non-learned items, irrespective of the choice of the free parameters. This explains why the slope of the z-transformed receiver-operating characteristics (z-ROCs) is lower one during recognition memory. When fitting the model to the empirical z-ROCs, it likewise predicted which word is recognized with which probability at the item-level. Since many of the strongest associates reflect semantic relations to the presented word (e.g., synonymy), the AROM merges form-based aspects of meaning representation with meaning relations between words

    The role of orbitofrontal cortex in processing empathy stories in 4-8 year-old children

    Get PDF
    This study investigates the neuronal correlates of empathic processing in childrenaged 4 to 8 years, an age range discussed to be crucial for the development ofempathy. Empathy, defined as the ability to understand and share another person’sinner life, consists of two components: affective (emotion-sharing) and cognitiveempathy (Theory of Mind). We examined the hemodynamic responses of pre-schooland school children (N=48), while they processed verbal (auditory) and non-verbal(cartoons) empathy stories in a passive following paradigm, using functional NearInfrared Spectroscopy (fNIRS). To control for the two types of empathy, childrenwere presented blocks of stories eliciting either affective or cognitive empathy, orneutral scenes which relied on the understanding of physical causalities.By contrasting the activations of the younger and older children, we expected toobserve developmental changes in brain activations when children process storieseliciting empathy in either stimulus modality towards a greater involvement ofanterior frontal brain regions. Our results indicate that children's processing of storieseliciting affective and cognitive empathy is associated with medial and bilateralorbitofrontal cortex (OFC) activation. In contrast to what is known from studies usingadult participants, no additional recruitment of posterior brain regions was observed,often associated with the processing of stories eliciting empathy. Developmentalchanges were found only for stories eliciting affective empathy with increasedactivation, in older children, in medial OFC, left inferior frontal gyrus (IFG), and theleft dorsolateral prefrontal cortex (dlPFC). Activations for the two modalities differonly little, with non-verbal presentation of the stimuli having a greater impact onempathy processing in children, showing more similarities to adult processing thanthe verbal one. This might be caused by the fact that non-verbal processing developsearlier in lif
    corecore