31 research outputs found

    Peripheral arterial volume distensibility changes with applied external pressure: significant difference between arteries with different compliance

    Get PDF
    This study aimed to quantify the different effect of external cuff pressure on arterial volume distensibility between peripheral arteries with different compliance. 30 healthy subjects were studied with the arm at two positions (0Ā° and 45Ā° from the horizontal level) to introduce different compliance of arteries. The electrocardiogram and finger and ear photoplethysmograms were recorded simultaneously under five external cuff pressures (0, 10, 20, 30 and 40ā€‰mmHg) on the whole arm to obtain arterial volume distensibility. With the applied external cuff pressures of 10, 20, 30 and 40ā€‰mmHg, the overall changes in arterial volume distensibility referred to those without external pressure were 0.010, 0.029, 0.054 and 0.108% per mmHg for the arm at the horizontal level, and 0.026, 0.071, 0.170 and 0.389% per mmHg for the arm at 45Ā° from the horizontal level, confirming the non-linearity between arterial volume distensibility and external pressure. More interestingly, the significant differences in arterial volume distensibility changes were observed between the two arm positions, which were 0.016, 0.043, 0.116 and 0.281% per mmHg (all Pā€‰<ā€‰0.01). Our findings demonstrated that arterial volume distensibility of peripheral arm arteries increased with external pressure, with a greater effect for more compliant arteries

    Evaluation of a new arterial pressure-based cardiac output device requiring no external calibration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several techniques have been discussed as alternatives to the intermittent bolus thermodilution cardiac output (CO<sub>PAC</sub>) measurement by the pulmonary artery catheter (PAC). However, these techniques usually require a central venous line, an additional catheter, or a special calibration procedure. A new arterial pressure-based cardiac output (CO<sub>AP</sub>) device (FloTracā„¢, Vigileoā„¢; Edwards Lifesciences, Irvine, CA, USA) only requires access to the radial or femoral artery using a standard arterial catheter and does not need an external calibration. We validated this technique in critically ill patients in the intensive care unit (ICU) using CO<sub>PAC </sub>as the method of reference.</p> <p>Methods</p> <p>We studied 20 critically ill patients, aged 16 to 74 years (mean, 55.5 Ā± 18.8 years), who required both arterial and pulmonary artery pressure monitoring. CO<sub>PAC </sub>measurements were performed at least every 4 hours and calculated as the average of 3 measurements, while CO<sub>AP </sub>values were taken immediately at the end of bolus determinations. Accuracy of measurements was assessed by calculating the bias and limits of agreement using the method described by Bland and Altman.</p> <p>Results</p> <p>A total of 164 coupled measurements were obtained. Absolute values of CO<sub>PAC </sub>ranged from 2.80 to 10.80 l/min (mean 5.93 Ā± 1.55 l/min). The bias and limits of agreement between CO<sub>PAC </sub>and CO<sub>AP </sub>for unequal numbers of replicates was 0.02 Ā± 2.92 l/min. The percentage error between CO<sub>PAC </sub>and CO<sub>AP </sub>was 49.3%. The bias between percentage changes in CO<sub>PAC </sub>(Ī”CO<sub>PAC</sub>) and percentage changes in CO<sub>AP </sub>(Ī”CO<sub>AP</sub>) for consecutive measurements was -0.70% Ā± 32.28%. CO<sub>PAC </sub>and CO<sub>AP </sub>showed a Pearson correlation coefficient of 0.58 (<it>p </it>< 0.01), while the correlation coefficient between Ī”CO<sub>PAC </sub>and Ī”CO<sub>AP </sub>was 0.46 (<it>p </it>< 0.01).</p> <p>Conclusion</p> <p>Although the CO<sub>AP </sub>algorithm shows a minimal bias with CO<sub>PAC </sub>over a wide range of values in an inhomogeneous group of critically ill patients, the scattering of the data remains relative wide. Therefore, the used algorithm (V 1.03) failed to demonstrate an acceptable accuracy in comparison to the clinical standard of cardiac output determination.</p

    Modeling the Instantaneous Pressureā€“Volume Relation of the Left Ventricle: A Comparison of Six Models

    Get PDF
    Simulations are useful to study the heartā€™s ability to generate flow and the interaction between contractility and loading conditions. The left ventricular pressureā€“volume (PV) relation has been shown to be nonlinear, but it is unknown whether a linear model is accurate enough for simulations. Six models were fitted to the PV-data measured in five sheep and the estimated parameters were used to simulate PV-loops. Simulated and measured PV-loops were compared with the Akaike information criterion (AIC) and the Hamming distance, a measure for geometric shape similarity. The compared models were: a time-varying elastance model with fixed volume intercept (LinFix); a time-varying elastance model with varying volume intercept (LinFree); a Langewouterā€™s pressure-dependent elasticity model (Langew); a sigmoidal model (Sigm); a time-varying elastance model with a systolic flow-dependent resistance (Shroff) and a model with a linear systolic and an exponential diastolic relation (Burkh). Overall, the best model is LinFree (lowest AIC), closely followed by Langew. The remaining models rank: Sigm, Shroff, LinFix and Burkh. If only the shape of the PV-loops is important, all models perform nearly identically (Hamming distance between 20 and 23%). For realistic simulation of the instantaneous PV-relation a linear model suffices

    Estimation of blood pressure variability from 24-hour ambulatory finger blood pressure

    No full text
    Portapres is a noninvasive, beat-to-beat finger blood pressure (BP) monitor that has been shown to accurately estimate 24-hour intra-arterial BP at normal and high BPs. However, no information is available on the ability of this device to accurately track ambulatory BP variability. In 20 ambulatory normotensive and hypertensive subjects, we measured 24-hour BP by Portapres and through a brachial artery catheter. BP and pulse interval variabilities were quantified by (1) the SDs of the mean values (overall variability) and (2) spectral power, computed either by fast Fourier transform and autoregressive modeling of segments of 120-second duration for spectral components from 0.025 to 0.50 Hz or in a very low frequency range (between 0.00003 and 0.01 Hz) by broadband spectral analysis. The 24-hour SD of systolic BP obtained from Portapres (24+/-2 mm Hg) was greater than that obtained intra-arterially (17+/-1 mm Hg, P0.15 Hz obtained by the Portapres was similar during the day but lower during the night when compared with those obtained by intra-arterial recordings (P<0.01). No differences were observed between Portapres and intra-arterial recordings for any estimation of pulse interval variabilities. The overestimation of BP variability by Portapres remained constant over virtually the entire 24-hour recording period. Thus, although clinical studies are still needed to demonstrate the clinical relevance of finger BP variability, our study shows that Portapres can be used with little error to estimate 24-hour BP variabilities if diastolic and mean BPs are used. For systolic BP, the greater error can be minimized by using correction factors

    Measuring Arterial Stiffness in Animal Experimental Studies

    No full text
    The arterial wall is a composite material of elastin, collagen, and extracellular matrix with acutely modifiable material properties through the action of smooth muscle cells. Therefore, arterial stiffness is a complex parameter that changes not only with long-term remodeling of the wall constituents but also with acute contraction or relaxation of smooth muscle or with changes in the acute distending pressure to which the artery is exposed. It is not possible to test all these aspects using noninvasive or even invasive techniques in humans. Full characterization of the mechanical properties of the artery and the specific arterial factors causing changes to stiffness with disease or modified lifestyle currently require animal studies. This article summarizes the major in vivo and ex vivo techniques to measure the different aspects of arterial stiffness in animal studies

    Connecting Ventricular Assist Devices to the Aorta: A Numerical Model

    No full text
    Mechanical circulatory support,in particular ventricular assist devices(VAD),has been recently proposed as an alternative to transplantation in the treatment of terminal heart failure in the context of the lack of donors and raising number of patients on the waiting list. Although these systems have proved their efficiency through a rigorous patient selection, the complication rate remains high and experience shows that many of them are related to haemodynamic modifications due to VAD implantation. Furthermore, VAD themselves have been widely studied, while the flow near the anastomosis VAD-aorta is still not well-known, although many complications arise at this site. We present here the mathematical settings and some preliminary results of a numerical model of the anastomosis between the outflow cannula of left ventricular assist devices (LVAD) and the aorta
    corecore