2,090 research outputs found

    Discovering New Physics in the Decays of Black Holes

    Get PDF
    If the scale of quantum gravity is near a TeV, the LHC will be producing one black hole (BH) about every second, thus qualifying as a BH factory. With the Hawking temperature of a few hundred GeV, these rapidly evaporating BHs may produce new, undiscovered particles with masses ~100 GeV. The probability of producing a heavy particle in the decay depends on its mass only weakly, in contrast with the exponentially suppressed direct production. Furthemore, BH decays with at least one prompt charged lepton or photon correspond to the final states with low background. Using the Higgs boson as an example, we show that it may be found at the LHC on the first day of its operation, even with incomplete detectors.Comment: 4 pages, 3 figure

    Discovering a Light Higgs Boson with Light

    Get PDF
    We evaluate the prospects for detecting a non-standard light Higgs boson with a significant branching ratio to two photons, in Run II of the Fermilab Tevatron. We derive the reach for several channels: 2γ2\gamma inclusive, 2γ+12\gamma+1 jet and 2γ+22\gamma+2 jets. We present the expected Run II limits on the branching ratio of hγγh\to\gamma\gamma as a function of the Higgs mass, for the case of ``bosonic'', as well as ``topcolor'' Higgs bosons.Comment: 11 pages, LaTeX, 7 figures, 4 tables, uses aipproc2.sty, contributed to the Physics at Run II Workshop, analysis redone with optimized cuts and improved background estimate, references adde

    Black Holes at Future Colliders and Beyond: a Topical Review

    Full text link
    One of the most dramatic consequences of low-scale (~1 TeV) quantum gravity in models with large or warped extra dimension(s) is copious production of mini black holes at future colliders and in ultra-high-energy cosmic ray collisions. Hawking radiation of these black holes is expected to be constrained mainly to our three-dimensional world and results in rich phenomenology. In this topical review we discuss the current status of astrophysical observations of black holes and selected aspects of mini black hole phenomenology, such as production at colliders and in cosmic rays, black hole decay properties, Hawking radiation as a sensitive probe of the dimensionality of extra space, as well as an exciting possibility of finding new physics in the decays of black holes.Comment: 31 pages, 10 figures To appear in the Journal of Physics

    Searching for the Layered Structure of Space at the LHC

    Full text link
    Alignment of the main energy fluxes along a straight line in a target plane has been observed in families of cosmic ray particles detected in the Pamir mountains. The fraction of events with alignment is statistically significant for families with superhigh energies and large numbers of hadrons. This can be interpreted as evidence for coplanar hard-scattering of secondary hadrons produced in the early stages of the atmospheric cascade development. This phenomenon can be described within the recently proposed "crystal world," with latticized and anisotropic spatial dimensions. Planar events are expected to dominate particle collisions at a hard-scattering energy exceeding the scale \Lambda_3 at which space transitions from 3D \rightleftharpoons 2D. We study specific collider signatures that will test this hypothesis. We show that the energy-spectrum of Drell-Yan scattering and the parton momenta sum rule are significantly modified in this framework. At the LHC, two jet and three jet events are necessarily planar, but four jet events can test the hypothesis. Accordingly, we study in a model-independent way the 5\sigma discovery reach of the ATLAS and CMS experiments for identifying four jets coplanarities. For the extreme scenario in which all pp \to 4 jet scattering processes become coplanar above \Lambda_3, we show that with an integrated luminosity of 10(100) fb^{-1} the LHC experiments have the potential to discover correlations between jets if \Lambda_3 \alt 1.25(1.6) TeV.Comment: To be published in Phys. Rev.

    Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    Get PDF
    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing \et measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore